Nov. 05

PROBABILISTIC INTERPRETATION OF THE HEAT EQUATION
In this lecture we give a probabilistic interpretation of the heat equation.

1. Brownian motion.

Consider a particle moving around in a set S. For two times ¢t < s and z € .S, E C S, we denote by P(t,
x; s, E) the probability of this particle ends up in E at time s while it starts from z at time ¢. In partic-
ular, we have

— P(t,x;s,5)=1for any t <s, x € S, since the particle is always contained in S;

—  P(t,z;s,¢) =0 where ¢ is the empty set.

We consider a “memoryless” particle, that is, if a particle is at point y at time 7, then its movement
afterwards is independent of how it gets there. In this case, we have the following Chapman-Kolmogorov
equation.

P(t,x;s,E)z/ P(r,y;s,E)P(t,z;7,y)dy (1)
s

where 7 is any time between ¢ and s.
Next we further simplify the situation by assuming that the movement of the particle is independent of
time, or more specifically,

P(t,x;s,E)=P(t+t,z;s+t',E) (2)

or equivalently, P(¢, x; s, E) only depends on ¢t — s,z and E. In this case we can simplify the notation by
denoting

P(t,x, E\=P(r,z;7+t, E) (3)

In other words, P(t,z, E) is the probability of a particle staring at = (the initial time doesn’t matter now)
ending up in E after time ¢.
The Chapman-Kolmogorov equation becomes

P<t+7,z,E>:/ P(r,y, ) P(t,z, y) dy (4)
for any t,7 > 0. 5

Remark 1. Such a family of probability distribution functions {P(t,x, E')} is called a Markov process.

Remark 2. In fact here it may be better to use p(t, x, y) for P(¢, x, y) as it is really a probability den-
sity. Thus we should write

P(T+t,z7E):/p(t,:c,y) P(r,y, E)dy. (5)
s
If we write u(t,z)=P(7+t,z, E), then we have

u(t.)= [ plt.z.9) wo(w) . ()

We clearly see that there is a possible relation to an evolution equation. For example,

1 _lz—y)?
plt,z,y)=—0—e T (7)
( ) 4 wt)"/ 2
in the case of the heat equation. Note that p(¢,z,y) is indeed a probability density.

In the next two sections, we will try to find out what this equation is.

In the following we consider the case S =IR"™. One can add further symmetry (besides time-translation
invariance) to the motion of the particle.



Definition 3. (Brownian motion) A Markov process P(t,x; E) is a Brownian motion if
a) it is spatially homogeneous:
Pt,x+z,E+2)=P(t,z, E), (8)
b) for all p>0 and all x € R™,
1
lim — p(t,x,y)dy=0. (9)
INO L Sjo—y>p

Thus for Brownian motion, the density can be further simplifed to p(t,z — y).

2. Semigroup properties.
For any bounded function f we can define a family of operators by

TH@= [ pita=) fw)ay. (10)
The goal of this section is to show the following theorem.

Theorem 4. Let B be the Banach space of bounded and uniformly continuous functions on R™, with
norm

[ull = sup |u(z)]. (11)
zeR™

Let P(t,x, E) be a Brownian motion. Define

@@= [ plta-u) fW)dy 200 Tof=7. (12)

Then {1}

}t20 constitutes a contracting semigroup on B.

Proof.

e T, maps B into B. That is we first verify that T;f remains bounded and uniformly continuous.

— Bounded. We have

/p@,z,y)f(y)dy' sup 17(2)| [o(t. .0 ay < sup |f) (13

zeR™ zeR™

sup [(T; f)(x)[ = sup
zER™ zER™

—  Uniformly continuous. We estimate

(Tof) () — (Tof ) (3 + 2)] /p<t,x—y>f<y>dy— /p<t,x+z—y>f<y>dy\

- /pof,:c—y)f(y)dy— /p<t,:c—y/>f<y/+z>dy'
(We set y' =y —2)

= | fotte w1500 - s+ 20
< /p@,z— W)/ ()~ F(y+2)|dy

< sup|f(y) fy+z|/ (tz—y
Yy
= sup |f(y)— f(y+2)|. (14)

The uniform continuity of T3 f now follows from the uniform continuity of f.

e {T}},5, is a continuous semigroup.

i. To=1d. This is exactly how Tj is defined.



ii. Tips=Ti0T,. We need to show

/p(t+8=w—y) f(y)dyz/p(taw—Z) [ /p(saz—y) f(y)dy|dz. (15)
This is equivalent to
p(t—l—s,:c—y):/p(t,:c—z)p(s,z—y)dz. (16)
Recall the Chapman-Kolmogorov equation
P(t—|—s,z,E):/SP(S,Z,E)p(t,:zr—z)dz, (17)

taking the “density” on both sides, we get the desired relation.

iii. limy_4, T3 f =T}, f for all to >0 and f € B.
We estimate |T; f — T f| for t > s. Denote =1 —s.

Tof@) = To ()] = [To(Tf)(@) — (Tof) ()]
' [ =0 (@) - D)) dy\

-
< / p(r,a = 4) (T F)(y) — (Tof)(@)] dy
|z —y|<6
+ / p(r,2 = 9) (T F)(y) — (Tof)(@)] dy
|z —y|>d
< ‘ iuI‘)<6|(Tsf)(y)_(TSf)(2) les p(T,x—y)dy
+ 2sup [(Tsf)(y)] . |>5p(ﬂx—y)dy
< sw () = ()
+ 2sup |(Tsf) ()] - |>6P(T7w—y)dy~ (18)
Now for any € > 0, we take § such that
s () = @AHE <5, (19)

and then take 0 < 7y <e/2 such that
1

1

= p(r,z—y)dy < . (20)

7 oizs "YW S ap T

Then for all 7 <19 we have
T, f(2) T f ()] <. (21)
e “Contracting” We need to show
sup [(Ty f)(@)| < swp |f(@)]  VfeB,i>0. (22)
zER™ zER™

But this is already done when showing 73 is bounded. |

3. From Brownian motion to the heat equation.
The goal of this section is to prove the following theorem.

Theorem 5. Let P(t, x, E) be a Brownian motion that is invariant under all isometries of Euclidean
space.! Then the infinitesimal generator of the contracting semigroup defined by this process is

A=cA (23)



where ¢ >0 is a constant. Furthermore the density is simply

1 _lz—y)?
pt,xr—y)=—e 4t . 24
(ta =) == (24)

Proof. First note that, since P(t, x, F) is invariant under all isometries of Euclidean space, the density
p(t,z — y) can only depend on the distance between z, y, that is

p(t,z—y)=p(t |z —yl). (25)
e Main idea.
We would like to find out
lim 4 (Tf = ) = lim 1 [ot.la =y (£ = Fla) (20

Now we expand f at x by Taylor expansion:

f@) ~ f@) =3 (0uf)(@) +5 Z 9i,)(@) (i —23) (y; — ;) + R(x, ), (27)

[

where R(z,y) =0(|x - y|2) as | —y|\,0.
Plugging this expansion into the limit we obtain

Af—hm (th Nx) = _ hm%/p(t’|$_y|)(3z‘f)($)(yi—xi)
+5d /W, = y) (0556) () (g —2) (3 — )

= Z Lli{%%/p(t,m—yw(yi—ﬂ?i)} (0if) ()
+Z B}{%% p(t; |z —yl) (yi — 1) (yj—wj)} (9i;f) ()

.1

We see that, if the last term vanishes, then formally we have shown that the infinitesimal generator

AZZ aijaij+z b; 0; (29)
o i

where

1.. 1 1
ay=glmg [ote—y) =s) i —a) b=ty [tle—y)m-z). G0

Now we formally argue that b;=0 and a;; =cd;;.
- b;=0.
We try to show that

[ottle =l @i =y ay=0 @1

or equivalently

/p(t,|3:|):131-d3::(). (32)

1. That is, translation (respected by any Brownian motion), rotation, and reflection. To see this, first note that any
isometry must also preserve angles. From this it is easy to show that it must be linear after setting the image of the origin
to be the new origin. Thus it can be represented by a matriz which must be orthogonal. And we know that any orthogonal
matriz is either a rotation or a composition of a rotation and a reflection.



But this is obvious as the integrand is odd in z;.

—  a;;=0 when i+ j.
We need to show

/p(t,|x|)xixjdx:(). (33)

The integrand is odd in both z; and x;.

- Qi = Q-
That is

/p(t,|x|)x?dx=/p(t,|x|)x§d:v. (34)

This follows from a change of variables.
— Furthermore we obtain
aii:%/p(t, @) o da (35)
therefore
a;j=c0;; (36)
with
c=1 [ptt.Ja) o d. (37)
Thus formally we have shown that
A=cA. (38)
In the following we will try to make the argument rigorous. We need to do the following

1. Justify the Taylor expansion. Note that a priori we do not know whether f € D(A) is differ-
entiable or not.

2. Show that

P{%% p(t, e — y|) R(z, y) dy =0; (39)

3. Justify the computations for a;;, b;.

Rigorous argument.
Before we start, first note that since P(x,t, E) is a Brownian motion,
1

lim — p(t,z,y)dy=0 (40)
ENO L Sjo—y|>p ( )

for any p>0. Thus for any fixed p, we have

.1 .1
i (0 =)@ =l [ plefe—u) ) - F@)dy (41)

as any f € B is bounded.

1. First we justify the Taylor expansion of f by showing that D(A) N C™ is dense in B. We do
this by showing that whenever f € D(A), f. = h* f is also contained in D(A), where h. =
e~ "™h(zx/e) is the usual (rescaled) mollifier.

Thus it suffices to show that the limit

1
}1\% ? [(Tt fa) - fa] (42)

exists.
First write

fg(x)zfs_"h(g) flz—=2) dz=/h(w) f(z —ew)dw. (43)



Then compute

vy =11 = o [ [tse= o) friw) s-cwyaw= [aw) fe—cuwyaw | ay}
= H{ fotele =) | frw) s -cw) - s -cuau ] av}
= [rr{3] [otele =) sr=cw)ay= s =zw)] baw. (4

Now because of the translation invariance, f € D(A) implies f(-—¢ew) € D(A) too, and fur-
thermore the convergence (in the space B, that is, uniform convergence)

1[/p@,|x—y|>f<y—ew>dy—f<x—aw>]—>(Af>(-—aw> (15)

t

is uniform with respect to € and w. Thus in particular,
1
H fotete = s-cwray - fa—ew)|

as functions in B are uniformly bounded in ¢. Application of Lebesgue’s dominated conver-
gence theorem gives

i [1) {3 | [ote. 1o = o) £ = e w) dy = fo — )|} dw = [1iw) (e -

t\.0

ew)dw. (46)
Therefore f. € D(A), and we can safely work on smooth functions only.

. Next we show that

1
lim & [p(t [2]) F(z) dy =0 (47)

when R(z,y)= 0(|x|2>.
Let ¢ be any smooth function in D(A). Then we have

(Ae)@) = T 1 [t 1o = yl) [o(w) - pla)]dy
~ lim 7 /p<t,|w—y|> (09 () (y: — :) dy

+hm /t|:z: y|z 0i0) (&) (vi — x4) (y; — x5) dy
- gi{%% p(f=|w—y|)2(3zg<p)( ) (=) (39— ;) dy. (48)

where £ is a point between x and y obtained from mean value theorem.
Thus it suffices to find one particular ¢ € D(A)NC such that

2
D (@ige)(€) (i — i) (y —25) > |z =y (49)
2
Since the integral domain can be taken as |y| < ¢, by taking e small enough, we further sim-
plify the requirement to

Z i) (@) (yi — 33) (y; — xj) = |z — y | (50)

and by translation invariance, finally we only need to find ¢ € D(A) N C* such that

(0i50)(0) x> |:1c|2 for |x| <e. (51)



Such a function can be obtained by cutting-off and then mollifying 2 |z |2.

3. Finally we justify the computations for a;; and b;. Just note that now the integration
domain is |z — y| < p. O

4. Particles in a lattice.

In this section we give a probabilistic interpretation of the heat equation from a discrete point of view.
Consider the lattice h Z™, and a collection of particles moving on it. We denote by p;; the number of par-
ticles at (¢, j) ((¢h, jh) as a point in R™).

We consider the case that the particles only move at times t, = k At, and further denote by pi?j the
number of particles at (4, j) at time t;. Further assume that at each step, a particle at (i, j) can only hop
to the four adjacent grids (i + 1, 5), (¢ — 1, j), (¢, + 1), (¢, § — 1) with equal probability (that is 1/4 each).
Under this assumption we have

k+1_

Pij [pFnj+pij+oF s+ pb 1] (52)

N

Subtracting pfj from both sides, we obtain

1
Pt - Pi‘gjzz [Pk +pba i+ ok s+ ok o1 =40k (53)

Finally assume that At=h2/4, we obtain

piit =k _ Pier g Pir gt Pyt plj—1— 40 (54)
At h? '
Now if
ptim p(k At,ih, jh) (55)

for a smooth function p(¢,z1,x2), the above differencee equation approximates

=00 (56)
which is the heat equation.
Exercises.

Exercise 1. Show formally that for general Brownian motions, that is without invariance under rotation and reflection,
we will obtain

A=Y aij(@) 07+ bi(x) O (57)
— -

Write down the formulas for a;;(z) and bg(x), then prove (basing on the formulas) that for any fixed =, the matrix
(aij(x)) is positive semidefinite.



