Oct. 17

HEAT EQUATION — EXPLICIT FORMULAS

We now turn to the heat equation

u—Au=f, in Qp; u=g on *Qr (1)
where
Qr=Qx[0,T); 8*QTE(Q>< {0}) U (992 x [0,T7). (2)
with Q C R™.

We call 0*Qr the reduced boundary of Q7. In this lecture we will find explicit representation formula
via fundamental solution, and discuss its maximum principles.

1. Fundamental solutions and homogeneous initial-value problems.

Similar to the case of Laplace/Poisson equations, we seek a special solution in the case {2 = R™ which
can help representing other solutions. There are two ways finding this solution. The first one is through
Fourier transform, the second one is by observing particular symmetries of the equation.

1.1. Method 1: Fourier transform.
We consider the Fourier transform in the spatial variable for the initial value problem

ur—Au=0, t>0; u=g, t=0. (3)
We obtain an ODE for the function (&, t):
(@), +1EPa=0,  a(£,0)=4(¢). (4)
This equation is easy to solve:
a(E, ) =g(g)e I (5)

Thus all we need to do is to find the inverse Fourier transform of e~ !¢I°t. From properties of the Fourier
transform, if

G'({):e_‘glz, (6)

then the Fourier transform of ¢~"/2 G(:c/tl/Q) is e 1€t

=L lela Y(6) =€
Lemma 1. Let G(z) a7 ¢ , then G(§)=e .

Proof. All we need to do is to compute!
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Thus our task is to compute the integral

/ e T "y (9)
where both x and £ are scalars now. 8
We construct the following contour in C: Let R >0 be real.

{-R—-+R}U{R—R-2¢i}U{R—-2&i——-R—-2¢&i}U{—R—-2¢i——R}=TUTUT'sUly. (10)

1. Remember that we defined the Fourier transform in Lecture 3 with a constant (2 7'(')7n/2. If we still use that defini-
tion, we need to replace e~ 11 by (2 7'(')771/2 e~ 161"t as when ¢ =0 we should get the Fourier transform of 4.



The function
67z2/47’izf (11)

is analytic inside this contour, therefore
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We further notice that

<Ce B0 (13)

and
as R '+ o0o. Thus

We compute

R

. e_y2/46752dy—>(477)1/26752. (16)

1.2. Method 2: Symmetry reduction.
Note that if u is a solution, so is )\O‘u()\l/Q x, )\t). Therefore we search for solutions of the form?

u(a:,t)_to‘v(tl%) (18)
Substituting v into the equation we obtain
at™ @D y(y) + % t= @Dy Vo (y) + @D Av(y) =0, (19)
which can be further simplified to
av(y)—i—%y-Vv(y)—i—Av(y):O. (20)

This equation enjoys similar rotational invariance as the Laplace equation. Therefore we search for solu-
tions of the form v(y)=w(|y|). We obtain

aw+%rw’+w”+n7_1w’:(). (21)
Now we set « =n/2 to obtain
(r"‘lw')/—l—%(r"w)/zo. (22)
Integrate, we have
r"‘lw'—l—%?""w:a, (23)

where a can be set 0 if we require that lim, _, ., w,w’=0. In this case we finally obtain

w:be_‘l, (24)

2. Note that this time we are not looking for a solution of
ug — Au=35(z, t) 17)

as 6(t, «) does not enjoy this scaling symmetry. And furthermore ¢t and x are inherently different and thus it is not
appropriate to put the RHS to be (¢, z).



and it turns out that the correct choice of b gives the following.
Definition 2. The function
O(z,t)=q (4nt)"/ (25)
0 t=0
is called the fundamental solution of the heat equation.

1.3. Properties of the fundamental solution.
The fundamental solution enjoys the following properties.

1. For each time ¢t >0,
/ O(z,t)dr=1. (26)

x
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To see this, do a change of variable z = which gives

2. Treating t as a parameter,

1i\1%(1)($7t)=6 (28)
t
in the sense of distributions.

This follows immediately from the first property after noticing that

@(z,t):a’”\ll(g) (29)
with
1 a2
U(y)=—" e 1¥I7/4 e=t1/2, 30
(v) TEE (30)
satisfying

/n U(y)dy=1. (31)

3. For every t >0, ®(z,t) €S the space of rapidly decreasing functions.?

1.4. Homogeneous initial value problem.
From the above properties we immediately obtain the explicit formula for solutions for the initial-value
problem:

ug—Au=0 in R" x (0, 00); u=g on R"x{t=0}. (32)

Theorem 3. (Solution of initial-value problem) Assume g€ C(R™)NL*(R"™), and define u by

1 _le—y)?
u(a:,t):/n b(z—y,t) g(y)dy—w/ne w g(y)dy, t>0, (33)
then

i. ue C*(R™ x (0, 00),
1. up— Au=0 when t >0,
15. u takes g as its initial value, that is
lim u(z,t) = g(zo) (34)
(z,t)—(20,0)

TER™,t>0
for all xg e R™.

3. Thus 2. and 3. combined, gives an example of how tempered distributions can be approximated by functions in S.



Proof.
i. When t >0, 0%0Ff® € S. Thus it is clear that we can differentiate freely inside the integration:
Oofu= | 020f®(x—y,t) g(y)dy. (35)
R7l
Thus u € C*°(R™ x (0,00). Note that furthermore u(-,t) €S as a function of x.
ii. This is clear from how we have obtained ®.
iii. Fix 29 € R™ and £ > 0. Choose § > 0 such that
lg(y) — g(zo)| <e if [y —zo|<d, yeR™ (36)

Then for any |z — x| < g, we have

ju(e, 1)~ (a0)| = ] [ #6500~ )]y

< ®(z—y,1) [9(y) = g(xo)| dy
BJ(I())
[ =0 o) - a0l dy
R™\Bs(zo)
<cf e@-yv2l [ a-uo)
Bs(x0) R"\Bs(%)
< 5/ fI)(x—y,t)—l—C/ t="%e dy
n IR"\BS(I())
_ly—=|
= e+ C/ tT2eT A dy. (37)
R7\Bs ()
A change of variable shows that the latter term — 0 as ¢ \, 0. O
2. Nonhomogeneous problem, Duhamel’s principle.
Now let us consider the nonhomogeneous case
—Au=f in R"x(0,00); u=g¢g on R"x {t=0}. (38)

It is clear that we can immediately simplify the situation to the case of zero initial data:
—Au=f inR"x(0,00); u=0 on R"x {t=0}. (39)
It turns out that the solution to this problem can be obtained by solving a family of homogeneous prob-
lems. We illustrate the idea in the situation of ODE systems first. Consider the ODE
v—Av=Ff, v(0) =0. (40)
In this case we can multiply both sides of the equation by e~“? which gives

%(efAtv):efAtf(t), (eiAtv)(O):O. (41)

and obtain the solution . .
v(t) = eAt/ e= A% f(s)ds= / =9 f(s)ds. (42)
0 0

Now consider the homogeneous system:
v—Av=0, v(0)=g. (43)
One easily sees that
v(t)=eltg. (44)
Comparing the two results we see that the solution to the inhomogeneous equation with zero initial value

can be represented as a summation of the solutions of a family of homogeneous equation with nonzero ini-
tial values:

v(t) :/0 w(t; s)ds (45)



with w(¢; s) satisfies the homogeneous equation with initial time s and initial value f(s). This is the
Duhamel’s principle.
By this principle we can write down the solution:

— ' — — s S S = t—l 67% S S
west)= [ [ o —vt-9 s [ty [T s ayas o

Now we need to prove
Theorem 4. (Solution of nonhomogeneous problem) Let f € CZ(R" x [0, 00))# and have compact
support. Then

i. ue€ CHR" x (0,00)),

1. ug— Au=f fort>0,

11. For each xog € R",

lim u(z,t)=0. (47)

(z,t)—(20,0)

zER™,t>0
Proof. First note that
t
u(x,t)z/ / O(y,s) f(x —y,t —s)dyds. (48)
0 n
i. By assumption we can differentiate inside the integral:

wet) = [ a0 sy 0yt [ [ 8.8 fe-pi-sayas (19)
Opizju(r,t) = / / (y,s ngjf)(x—y t—s)dyds. (50)

ii. We calculate
u(x,t) — Au(z,t) = / / (y,5)[(0r — D) f(x —y,t —s)]dyds

(yv )f(I—y,O)dy

R7l
= A+B. (51)
—  Term A.
First note that since
[ st <swio-m0) [ swoa o

the integral is well-defined. As @ is a singularity at s =0, we write
A= [ ] aw9(0-2)5-i-s)ayas
t
= ;{%[/ /n@(y,s) [(—Bs—Ay)f(:E—y,t—s)]dyds]
=il [ (-0 8805 fla -t sy ayas
+ [ a0 so-yt-eay- /nfb(y,t)f(x—y,ﬂ)dy]

11?’1 R q)(y,E)f(.I—y,t—E)dy—B. (53)

4. Cp'(R™ % [0,00)) means f has m continuous deriwatives in x and n continuous derivatives in t.



Therefore
w—NAu = A+ B
= lim O(y,e) flx —y,t—e)dy

e Jrn
— 1| [ 009 w00y
+/n‘1>(y76)[f(w—y,t—a)—f(w—yi)]dy
= f(z,t). (54)
iii. It is clear that
sgPIU($=t)I<tS£f|f|—>0 (55)
as t \,0. O

Combining the above results, we can present the formula for the solution in the general case in the whole
space:

u—Au=f t>0; u=g t=0. (56)

The solution is
t
u(z,t) :/ O(z—y,t) g(y) dy—i—/o / O(x—y,t—s) f(y,s)dyds. (57)
3. Regularity.

Theorem 5. (Smoothing effect of heat kernel) Suppose u € Cf(QT) solves the heat equation in Qr,
then

u e C®(Qr). (58)
We introduce the typical region considered when doing parabolic regularity:
Clz,t;ir)={(y,9): lv—y|<r, t=r’<s <t} (59)
It suffices to prove that if u € Cf(C(z,t;7)) solves the equation, then u € C* inside C(z,t;7/2).

Proof. We sketch the ideas. For details see L. C. Evan Partial Differential Equations, pp. 59 — 61.
Fix (zo, to). Take a “cut-off” function n which is 0 outside C(zo, to; r) and 1 inside C(zo, to; 3 r/4).
Then consider v(z,t) =n(z,t) u(z,t). We have

ve—Av=nu—2Vn-Vu—uln. (60)
Now we can use the explicit formula to obtain
u(:v,t)zv(x,t):/ O(x—y,t—9)[(ns—An)u—2Vn-Vul(y,s)dyds. (61)
C(xo,to;T)

for all (z,t) € C(wo,t0;37/4).
Finally notice that, ns, An, Vi vanishes inside C/(zo, to; 37/4) which means

u(a:,t):/ O(x—y,t—3)[(ns— LAn)u—2Vn-Vu|(y,s)dyds. (62)
C(z0,t0;r)\C(z0,t0;37/4)

As a consequence, for any (x,t) € C(xo, to; 7/2), the integrand is uniformly bounded and can be differenti-
ated arbitrarily. (]

We further have the following estimate for derivatives.



Theorem 6. We have
C(a,l)

aql
C(g}gfm) }8x8tu| <m/c(m)tﬂ‘) |u| dz dt. (63)

Proof. This follows naturally from the proof of the last theorem. See L. C. Evan Partial Differential
Equations, pp. 61 — 62 for details. |
Further readings.

e L. C. Evans, §2.3

e J. Jost, §4.1-4.2.
Exercises.

Exercise 1. Consider the linear transport equation

us—cuy=f z€R,t>0; u(z,0)=g. (64)

First solve the homogeneous case (i.e. f =0), then use Duhamel’s principle to find its solution in the general case (f #
0).



