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Viscosity Solutions

In this lecture we take a glimpse of the viscosity solution theory for linear and nonlinear PDEs. From our
experience we know that even for linear equations, the existence of solutions is not easy to establish,
where the best strategy is to first show the existence of solutions in a weaker sense and then establish reg-
ularity. However for a general nonlinear PDE, the usual strategy of multiplying by test functions does not
work, and unless the equation is an Euler-Lagrange equation of some functional ( that is, the equation is
the necessary condition for u to be a minimizer of some functional) , it is also not clear how variational
formulation/direct methods can help.

It turns out that one can define a new type of weak solutions by “testing” the solution in a whole new
sense. Such solutions are called “viscosity solutions”, and a quite complete regularity theory which paral-
lels those we have seen has been established in the past 25 years. 1

1 . Examples of fully nonlinear elliptic PDEs.
In this section we list a few example of the equations that can be dealt with using the idea of viscosity

solutions.

Example 1 . Hamilton-Jacobi equation.

H ( x , u , Du) = 0 ( 1 )

In particular, the eikonal equation

| Du | = n(x ) ( 2 )

for some n(x ) > 0 in Ω̄ . Here

| Du | =
( ∑

i

(∂iu)
2

) 1 / 2

. ( 3)

Example 2. Hamilton-Jacobi-Bellman equation.
Let

Lαu ≡
∑

i , j= 1

N

ai j
α (x ) ∂i ju +

∑

i= 1

N

bi
α (x ) ∂iu + cα ( x) u( x) − fα (x ) ( 4)

where Aα ≡ ( ai j
α ) are positive semi-definite with ai jα only L∞ .

The Hamilton-Jacobi-Bellman equation reads

sup
α

{Lαu } = 0 . ( 5)

In particular, when α takes only one value, Lu is a second order elliptic operator which is not in diver-
gence form ( thus the Dirichlet principle cannot help since ai jα are not differentiable) .

Example 3. Obstacle problem.

max
{
F
(
x , u , Du , D2u

)
, u − f (x )

}
= 0 , ( 6)

or

min
{
F
(
x , u , Du , D2u

)
, u − f (x )

}
= 0 , ( 7)

or
max

{
min

{
F
(
x , u , Du , D2u

)
, u − f (x )

}
, u − g(x )

}
= 0 . ( 8)

Example 4. Monge-Ampère equation.

u is convex, det
(
D2u

)
= f (x , u , Du) . ( 9)

1 . Among the main contributors are L . Caffarelli , M . G . C randall, L . C . Evans, H . Ishii, and P . L . L ions. In part icular,
the 1 983 paper “Viscosity solutions of Hamilton-Jacobi equations” by Crandall and Lions is one of the contributions that
helps the latter to win the Fields Medal in 1 994.



2. Viscosity solutions.
Consider a function F : Ω × R × Rn × S (n) 2 � R, written as F(x , r , p, X ) . We call F

− degenerate elliptic if it is nonincreasing in its matrix argument:

F(x , r , p, X ) 6 F (x , r , p, Y) for Y 6 X3 ( 1 0)

and furthermore

− proper if it is also nondecreasing in r :

F(x , s , p, X ) 6 F(x , r , p, Y) for s 6 r , Y 6 X. ( 1 1 )

Example 5. The (minus) Laplacian − 4 corresponds to F(x , r , p, X ) = − tr(X ) . We can check that it is
proper.

Example 6. The Hamilton-Jacobi equation corresponds to

F( x , r , p, X ) = H(x , r , p) . ( 1 2 )

It is proper as long as H is nondecreasing in r .

Definition 7. Let F be proper, Ω be open and u : Ω � R. Consider the fully nonlinear equation

F
(
x , u , Du , D 2u

)
= 0 . ( 1 3)

Then u is a

− viscosity subsolution if it is upper- semicontinuous 4 and for every ϕ ∈ C2 ( Ω) and x̂ ∈ Ω which is a
local maximum of u − ϕ , we have

F
(
x̂ , u( x̂ ) , Dϕ ( x̂ ) , D 2ϕ ( x̂ )

)
6 0; ( 1 8)

− viscosity superso lution if it is lower- semicontinuous and for every ϕ ∈ C2 ( Ω) and x̂ ∈ Ω which is a
local minimum of u − ϕ , we have

F
(
x̂ , u( x̂ ) , Dϕ ( x̂ ) , D 2ϕ ( x̂ )

)
> 0; ( 1 9)

− viscosity solution if it is both a viscosity subso lution and a viscosity superso lution.

Remark 8. By definition any viscosity solution is continuous.

Remark 9. To visualize the situation, notice that only Dϕ and D 2ϕ are involved, therefore one can
freely replace ϕ by ϕ + c . Thus “x̂ is a local maximum of u − ϕ” can be visualized as ( the graph of)
ϕ “touches” ( the graph of) u from above and “x̂ is a local minimum of u − ϕ” can be visualized as
ϕ “touches” u from below.

2 . The space of n × n symmetric matrices .

3 . Meaning X − Y is posit ive semi-definite.

4 . A function u is upper semicontinuous if

u(x ) = u∗ (x ) ≡ limsup
r↘ 0

{u( y) : y ∈ Ω , | y − x | 6 r } , ( 1 4)

or e quiva lently

u(x ) > limsup
k↗∞

u( xk ) ( 1 5 )

whenever xk→ x ; u is lower semicontinuous if

u( x) = u∗ ( x ) ≡ liminf
r↘ 0

{u( y) : y ∈ Ω , | y − x | 6 r } , ( 1 6 )

or e quiva lently

u( x ) 6 liminf
k↗∞

u(xk ) ( 1 7)

whenever xk→ x . No te that if u is bo th lower semicontinuous and upper semicontinuous, then u is continuous.



Remark 1 0. The above definition generalizes the classical ones. For example, if u ∈ C2 satisfies F
(
x , u ,

D u , D2u
)
6 0 , then for any ϕ ∈ C2 , and x̂ ∈ Ω where u − ϕ reaches maximum, then we have Dϕ ( x̂ ) =

Du( x̂ ) and D2ϕ ( x̂ ) > D 2u( x̂ ) which implies

F
(
x̂ , u( x̂ ) , Dϕ ( x̂ ) , D2ϕ ( x̂ )

)
6 F

(
x̂ , u( x̂ ) , D u( x̂ ) , D 2u( x̂ )

)
6 0 ( 20)

since F is proper.

Example 1 1 . Consider the equation

| u ′ | 2 = 1 in ( − 1 , 1 ) , u( − 1 ) = u( 1 ) = 0 . ( 21 )

Note that ambiguity appears when we try to formulate it into the form in the definition of viscosity solu-
tions. We can use

F(x , r , p, X ) = | p | 2 − 1 . ( 22 )

or

G( x , r , p, X ) = 1 − | p | 2 . ( 23)

We will explore this equation now. Along the way we will see that these two formulations are not equiva-
lent in the viscosity sense.

• First note that our equation cannot have a classical solution in C1 . To see this, notice that since u ′

is continuous and
∫
− 1

1
u ′ = 0 , there must be a point ξ ∈ ( − 1 , 1 ) such that u ′( ξ) = 0 . Thus by conti-

nuity | u ′ | 2 = 1 cannot hold in some small neighborhood of ξ .

• Next we see that if we relax the requirement to u ∈ Lip and satisfies | u ′ | 2 = 1 almost everywhere,
then there are infinitely many solutions. These solutions are between 1 − | x | and | x | − 1 .

• Then we can check that 1 − | x | is a viscosity solution to F = 0 and | x | − 1 is a solution to G = 0 .

• Finally we show that 1 − | x | is the only viscosity solution to F = 0 . In other words, we regain the
lost uniqueness by consider viscosity solutions.

To see this, let u be a viscosity solution of F = 0 . That is, for any ϕ ∈ C2 and any x̂ maximizing
(minimizing) u − ϕ , we have | ϕ ′( x̂ ) | 6 1 ( > 1 ) . We want to show that u = 1 − | x | .
− Taking ϕ = c (x − 1 ) with c < − 1 . We see that we must have u 6 ϕ . Taking c↗ − 1 we see

u 6 1 − x .
− Similarly we can show u 6 x + 1 . Thus we have u 6 1 − | x | .
− On the other hand, consider the test function ϕ obtained by “smoothing out” the tip of

c ( 1 − | x | ) for 0 < c < 1 . For such ϕ we have u( ± 1 ) = ϕ ( ± 1 ) . Now if there is ξ ∈ ( − 1 , 1 )
such that u( ξ) < ϕ ( ξ) , we know there must be a minimizer x̂ ∈ ( − 1 , 1 ) of u − ϕ . Contradic-
tion.

− Combining the above, we see that u 6 1 − | x | but u > ϕ for ϕ arbitrarily close to 1 − | x | .
Thus u = 1 − | x | .

3. Maximum principles ( comparison principles) .
Let Ω be a bounded open set in Rn . Consider the Dirichlet problem

H(x , u , Du) = 0 in Ω; u = g on ∂Ω . ( 24)

Here H is continuous and proper on Ω̄ × R × Rn and g ∈ C(∂Ω) . We say that u : Ω̄ � R is a subsolution if
u is upper-semicontinuous and H( x̂ , u( x̂ ) , D u( x̂ ) ) 6 0 for any x̂ maximizing u − ϕ , and u 6 g on the
boundary. We define supersolutions similarly.

We would like to show the comparison principle: When u is a subsolution and v is a supersolution,
then u 6 v .

Remark 1 2. Note that uniqueness immediately follows from the comparison principle.



Remark 1 3. Note that uniqueness does not hold for all H . For example, let w ∈ C1
(
Ω̄
)
be such that w =

0 on ∂Ω . Then obviously ± w are both classical ( and thus viscosity) solutions of

H(x , u , Du) ≡ | Du | 2 − | Dw | 2 = 0 . ( 25)

As a consequence, the comparison principle cannot hold for such H .

Now we discuss the idea of the proof. Pretending that u and v are smooth enough, we can use v as a
test function for the subsolution u , and conclude: For any x̂ such that u − v reaches local maximum, H( x̂ ,
u( x̂ ) , D v ( x̂ ) ) 6 0 . Using u as a test function for the supersolution v , noticing that the same x̂ minimizes
v − u , we obtain H( x̂ , v( x̂ ) , D v ( x̂ ) ) = H( x̂ , v ( x̂ ) , D u( x̂ ) ) > 0 . In particular, we have

H( x̂ , u( x̂ ) , D v ( x̂ ) ) 6 H( x̂ , v ( x̂ ) , D u( x̂ ) )
�

u( x̂ ) 6 v ( x̂ ) ( 26)

as long as H (x , r , p) is strictly increasing in r . Recalling that x̂ is any local maximizer, and u 6 v on the
boundary, we conclude that u 6 v everywhere.

The above argument is obviously flawed, as u and v may not be differentiable. Furthermore, recalling
out example of H = | p | 2 − 1 , it is not possible to remedy this by showing somehow the solutions are C2 .

The method to overcome this difficulty is the following trick of doubling the variables. Instead of using
v (x ) as a test function, we use v ( y) +

1

2 ε
| x − y | 2 , note that this function is smooth with respect to x . Let

( x̂ε , ŷε ) be the maximizer of

Φ(x , y) ≡ u( x) −
[
v ( y) +

1

2 ε
| x − y | 2

]
. ( 27)

Note that

u( x) − v (x ) = Φ (x , x ) 6 Φ( x̂ε , ŷε ) 6 u( x̂ε ) − v ( ŷε ) ( 28)

for any x ∈ Ω . Therefore all we need to do is to show that liminfε↘ 0 [u( x̂ε ) − v ( ŷε ) ] 6 0 .

To show this, we use the fact that x̂ε maximizes u(x ) −
[
v ( ŷε ) +

1

2 ε
| x − ŷε | 2

]
and the fact that u is a

subsolution to obtain

H

(
x̂ε , u( x̂ε ) , Dx

[
v ( ŷε ) +

1

2 ε
| x − ŷε | 2

] )
6 0 ( 29)

which simplifies to

H

(
x̂ε , u( x̂ε ) ,

x − ŷε
ε

)
6 0 . ( 30)

On the other hand, ŷε minimizes v ( y) −
[
u( x̂ε ) − 1

2 ε
| x̂ε − y | 2

]
which leads to

H

(
ŷε , v ( ŷε ) ,

x − ŷε
ε

)
> 0 . ( 31 )

Summarizing, we have in particular

H

(
x̂ε , u( x̂ε ) ,

x − ŷε
ε

)
− H

(
ŷε , v ( ŷε ) ,

x − ŷε
ε

)
6 0 . ( 32 )

At this stage one needs to restrict oneself to special cases. We will discuss the simplest one, when

H(x , r , p) = r + G( p) − f ( x) ( 33)

for f ∈ C
(
Ω̄
)
( and therefore uniformly continuous) .

For such H , we obtain

u( x̂ε ) − v ( ŷε ) 6 f ( x̂ε ) − f ( ŷε ) . ( 34)

Recalling

u(x ) − v ( x) = Φ ( x , x) 6 Φ( x̂ε , ŷε ) 6 u( x̂ε ) − v ( ŷε ) , ( 35)

we see that all we need to do is to show that x̂ε − ŷε � 0 as ε↘ 0 .



This can be shown easily as follows. Recall that ( x̂ε , ŷε ) is the maximizer of Φ(x , y) , we have in partic-
ular Φ( x̂ε , ŷε ) > Φ( x , x ) which leads to

1

2 ε
| x̂ε − ŷε | 2 6 u( x̂ε ) − v ( ŷε ) − u( x) + v (x ) 6 Constant5 . ( 36)

Remark 1 4. In Section 4 of M. G. Crandall, Viscosity so lutions: a primer , a stronger result

1

ε
| x̂ε − ŷε | 2 � 0 ( 37)

is proved. But as we have seen here, this stronger estimate is not necessary in our simple case.

Remark 1 5. The above result does not include the eikonal equation | Du | 2 − f ( x) = 0 , which we have
indeed shown that cannot enjoy the comparison principle. But for the case f > 0 on Ω̄ , one can set v = −
e− u to obtain an equation for v which enjoys it. For a direct proof for the eikonal equation, see H. Ishii A
simple , direct proof of uniqueness for so lutions of the Hamilton-Jacob i equations of eikonal type , Proceed-
ings of the AMS, 1 00( 2 ) , June 1 987, 247 – 251 .

4. Existence and Perron’ s method.
With the help of the comparison principle, one can show existence via Perron’ s method.

Theorem 16. ( Ishii) Let the comparison principle holds for the Dirichle t prob lem. Further assume that
there is a subso lution u and a superso lution ū which satisfy the boundary condition: u = ū = g on ∂Ω .
Then

W ( x ) ≡ sup {w ( x) : u 6 w 6 ū and w is a subso lution } ( 38)

is a viscosity so lution of the prob lem.

The basic idea is to show that if a subsolution w is not a solution, then one can modify it to obtain
another subsolution w̃ such that w̃ > w in a small neighborhood. The details can be found in Section 9 of
M. G. Crandall, Viscosity so lutions: a primer .

5. Idea of regularity: Tangent paraboloids and second order differentiability.
I haven’ t been able to find a proof of the regularity for the Hamilton-Jacobi equation. Here we will

just mention how it is possible to obtain regularity for viscosity solutions through properties of the test
function ϕ . The material comes from §1 . 2 of the book L. A. Caffarelli, X. Cabré, Fully Nonlinear
Elliptic Equations .

We consider test functions of the form

ϕ± (x ) = a + b · x ± M
2
| x | 2 ( 39)

where M is a positive constant.
Let u ∈ C

(
Ω̄
)
. We try to “test” u from above using ϕ+ with positive M and from below using ϕ− with

negative M . We say ϕ “touches” u from above( below) at x0 in a subset A of Ω if

u(x ) 6 ϕ (x ) ( > ϕ (x ) ) ∀x ∈ A ; u(x0 ) = ϕ (x0 ) . ( 40)

In other words, x0 is a local maximizer(minimizer) of u − ϕ .
Now set

Θ(u , A) ( x0 ) ≡ max { arginfMϕ+ , arginfMϕ− } . ( 41 )

If it is not possible to “test” u by ϕ+ ( ϕ− ) from above( below) for any M , we say Θ(u , A) (x0 ) = ∞ .
The crucial observation is the following: Let e be any unit direction. We define the second finite differ-

ence

4 h , e2 u(x0 ) ≡ u(x0 + h e) + u( x0 − h e ) − 2 u(x0 )

h2
. ( 42 )

5 . As x is an arbitrary but fixed point, u( x) − v ( x ) is a constant. Now since u is upper-seimcontinuous ( definit ion of sub-

solutions) , max u is attained; S imilarly min v is attained. Therefore u − v attains a finite maximum.



Then it is easy to see that ∣∣ 4 h , e2 u(x0 )
∣∣ 6 Θ

(
u , B | h | ( x0 )

)
(x0 ) . ( 43)

From this one can obtain

Proposition 1 7. Let 1 < p 6 ∞ and u be a continuous function in Ω . Let ε be a positive constant and
define

Θ(u , ε) ( x) ≡ Θ( u , Ω ∩ Bε (x ) ) ( x) , x ∈ Ω . ( 44)

Assume that Θ(u , ε) ∈ Lp. Then D 2u ∈ Lp and
∥∥ D2u

∥∥
L p ( Ω )

6 2 ‖ Θ(u , ε) ‖ L p ( Ω )
. ( 45)

Furthermore, when Ω is convex and Θ(u , ε) is uniformly bounded, we can obtain u ∈ C1 , 1 with

| Du( x) − Du( y) | 6 2 n ‖ Θ( u , ε) ‖ L∞ | x − y | . ( 46)

Further readings.

• M. G. Crandall, Viscosity solutions: a primer , Viscosity solutions and applications (Montecatini
Terme, 1 995) , 1 –43, Lecture Notes in Math. , 1 660, Springer, Berlin, 1 997.

• M. G. Crandall, H. Ishii, P. -L. Lions, User’ s guide to viscosity so lutions of second order partial
differential equations , Bulletin of the AMS, 27( 1 ) , 1 992 , 1 –67.

• L. A. Caffarelli , X. Cabré, Fully Nonlinear Elliptic Equations , AMS, 1 995.

Exercises.

Exercise 1 . ( Regularity theory for the Laplace equation) Consider the Laplace equation 4u = 0 . Show that if u is a
viscosity solution , then u is harmonic ( that is u is a classical solut ion) .

Exercise 2 . ( Optional) . Consider the equation

| Du | − 1 = 0 , x ∈ Ω ⊂ Rn ; u = 0 x ∈ ∂Ω . ( 47)

Show that u(x ) ≡ dist (x , ∂Ω) solves this equation in the viscosity sense.


