Math 497 R1 Winter 2018 Navier-Stokes Regularity Lecture 1: Sobolev Spaces and Newtonian Potentials Xinwei Yu

Jan. 10, 2018

Based on 1.1-1.2 of [1]. Some fine properties of Sobolev spaces, and basics of Newtonian potentials.

TABLE OF CONTENTS

1.	Sobolev Spaces	2
	1.1. Lebesgue spaces	
2.	NEWTONIAN POTENTIALS	4
Bı	IBLIOGRAPHY	5

1. SOBOLEV SPACES

1.1. Lebesgue spaces

LEMMA 1. (LEMMA 1.1 OF [1]) Let $1 \leq p < \infty$, then $L_p(\Omega)$ is the completion of $C_0^{\infty}(\Omega)$ in $L_p(\Omega)$.

Proof.

- 1. We have $\Omega = \bigcup B_n$ where B_n has center $x_n \in \Omega$ rational and radius $r_n = \frac{1}{2} \operatorname{dist}(x_n, \Omega^c)$.
- 2. We also have Ω can be approximated from within by compact sets C_m such that the measure of the difference ΩC_m goes to zero.
- 3. Each C_m can be covered by finitely many B_n 's. Denote the union of these balls by Ω_m . We now have dist $(\Omega_m, \Omega^c) > 0$ and $||u||_{L_p(\Omega \Omega_m)} \longrightarrow 0$.
- 4. Now mollify $u \chi_{\Omega_m}$ to get $u_m \in C_0^{\infty}(\Omega)$.

Remark 2.

- i. Note that Ω is only required to be a domain (open connected set). No regularity is needed for $\partial\Omega$.
- ii. It is obvious that L_{∞} is not the completion of C_0^{∞} .

QUESTION 3. What about Lorentz spaces?

1.2. Sobolev spaces

DEFINITION 4. (SOBOLEV SPACES)

• $W_s^k(\Omega)$. L_s integrability of weak derivatives.

$$\|u\|_{W^k_s(\Omega)} = \sum_{i=0}^k \|\nabla^i u\|_{s,\Omega}.$$
(1)

- $\mathring{W}^k_s(\Omega)$. W^k_s completion of $C_0^{\infty}(\Omega)$.
- $L_s^k(\Omega)$. L_s integrability of $\nabla^k u$.

$$\|u\|_{L^k_s(\Omega)} = \|\nabla^k u\|_{s,\Omega}.$$
(2)

- $\mathring{L}^k_s(\Omega)$. L^k_s completion of $C^{\infty}_0(\Omega)$ in the following sense. $[u] \in \mathring{L}^k_s(\Omega)$ is an equivalence class of functions satisfying
 - a) $\forall v, w \in [u], \nabla^k(v-w) = 0, and$
 - b) $\exists u_0 \in [u]$ such that there exists $u_m \in C_0^{\infty}(\Omega)$ with $\|\nabla^k (u_m u_0)\|_{s,\Omega} \longrightarrow 0$.

It turns out that integrability of derivative implies local integrability of the function.

Theorem 5. (Theorem 1.1) $u \in L_s^k(\Omega) \Longrightarrow u \in L_{s,\text{loc}}(\Omega)$.

Proof.

It suffices to prove for k = 1. Once this is done, the general case follows easily from induction. By assumption, for any $\varphi \in C_0^{\infty}(\Omega)$ we have $\langle u, \nabla \varphi \rangle = -\int_{\Omega} g \varphi$ for some $g \in L_s(\Omega)$. We need to prove, for any $\Omega_0 \subseteq \Omega$, $u \in L_s(\Omega_0)$. The main difficulty lies in construction of the function u which is well-defined in the whole Ω . Now fix one such Ω_0 . Let $0 < \varepsilon < \text{dist}(\Omega_0, \Omega^c)$. Let u_{ε} be the standard mollification of the distribution u.

i. We first show that $u_{\varepsilon} \in L_{\infty}(\Omega_0)$ for each ε . To see this, define $l: L_1(\Omega_0) \mapsto \mathbb{R}$ by

$$l(\psi) := \langle u, \psi_{\varepsilon} \rangle. \tag{3}$$

As $u \in \mathcal{D}'(\Omega)$, there is $m \in \mathbb{N} \cup \{0\}$ such that $|l(\psi)| \leq C \|\psi_{\varepsilon}\|_{C^m(\Omega)} \leq C(\varepsilon) \|\psi\|_{L^1(\Omega_0)}$. Thus by Riesz representation theorem we have $u_{\varepsilon} \in L_{\infty}(\Omega_0)$.

- ii. Now we easily see that $g_{\varepsilon} = \nabla u_{\varepsilon}$ in Ω_0 .
- iii. Next let $\bar{u}_{0,\varepsilon} := u_{\varepsilon} [u_{\varepsilon}]_{\Omega_0}$ where $[u_{\varepsilon}]_{\Omega_0}$ is the average of u_{ε} in Ω_0 . By Poincare's inequality we have $\bar{u}_{0,\varepsilon} \longrightarrow u_0$ in $L_s(\Omega_0)$. ??? Naturally $g = \nabla u_0$ in Ω_0 .
- iv. Now we need to construct u, defined on Ω , such that $u|_{\Omega_0} = u_0$. Let $\Omega_1 \supseteq \Omega_0$ and $\subseteq \Omega$. Repeating the above we have $u_1 \in L_s(\Omega_1)$ such that $g = \nabla u_1$ in Ω_1 . As $\nabla(u_1 - u_0) = 0$ in Ω_0 , $u_1 - u_0 = C_0$, a constant, in Ω_0 . We re-define $u_1 - C_0 \in L_s(\Omega_1)^1$ as the new u_1 . This can be repeated for a nested sequence of sets $\Omega_0 \subseteq \Omega_1 \subseteq \Omega_2 \subseteq \cdots \subseteq \Omega$. Note that in each Ω_m , we have $u_m = u_{m+1} = u_{m+2} = \cdots$. Thus convergence is not an issue.

Finally, any other v with $\nabla v = g$ is just a constant away from the u just constructed.

Remark 6. It is clear that we cannot expect $u \in L_s(\Omega)$. For example let $\Omega = \mathbb{R}$ and $s = \infty$, and u = |x|.

COROLLARY 7. If $u_m \in C_0^{\infty}(\Omega)$ is Cauchy in L_s^k , then there is $u \in L_s^k(\Omega)$ such that $||u_m - u||_{L_s^k(\Omega)} \longrightarrow 0$.

Remark 8. The proof is similar to that of Theorem 5. Also note that Ω does not need to be bounded here.

COROLLARY 9. (PROPOSITION 1.2) For bounded domain Ω , $\mathring{L}^k_s(\Omega) = \mathring{W}^k_s(\Omega)$.

Proof. Clearly $\mathring{W}_{s}^{k}(\Omega) \subseteq \mathring{L}_{s}^{k}(\Omega)$. For the other direction, we need to show that for every $[u] \in \mathring{L}_{s}^{k}(\Omega)$, there must exist a $v \in [u]$ such that $v \in \mathring{W}_{s}^{k}(\Omega)$.

Let $[u] \in \mathring{L}^k_s(\Omega)$. By definition there is $w \in L_{s, \text{loc}}(\Omega)$ such that

- i. For every other $w' \in [u]$, $\nabla^k (w w') = 0$;
- ii. There is a sequence $w_m \in C_0^{\infty}(\Omega)$ such that $\nabla^k w_m \longrightarrow \nabla^k w$ in $L_s(\Omega)$.

As Ω is bounded, we have Friedrichs inequality:

$$\|w_m - w_{m'}\|_{L_s(\Omega)} \leqslant c \, \|\nabla^k w_m - \nabla^k w_{m'}\|_{L_s(\Omega)} \tag{4}$$

which can be obtained through repeated application of Poincaré. Thus w_m converges in L_s , to some function v. It is clear that $v \in [u]$.

Remark 10. When $n \ge 3$, thanks to the Gagliardo-Nirenberg inequality $||u||_{p,\Omega} \le c(n) ||\nabla u||_{2,\Omega}$ where $p = \frac{2n}{n-2}$, we see that $\mathring{L}_2^1(\Omega) \subset L_p(\Omega)$, in the sense that for every $[u] \in \mathring{L}_2^1(\Omega)$, there is a $w \in [u]$ such that $w \in L_p$.

When n = 2 and $\Omega = \mathbb{R}^2_+$, we can still select a "good representative" for every $[u] \in \mathring{L}^1_2(\mathbb{R}^2_+)$ by the criterion $\|v\|_{L_2(\Pi)} < \infty$ where $\Pi = \mathbb{R} \times (0, 1)$. \Longrightarrow Any Ω with good boundary would be OK?

^{1.} Ω_1 is bounded.

2. NEWTONIAN POTENTIALS

Recall the fundamental solutions

$$E(x) = \begin{cases} \frac{1}{2\pi} \ln \frac{1}{|x|} & n = 2\\ \frac{1}{\omega_n n (n-2)} \frac{1}{|x|^{n-2}} & n \ge 3 \end{cases}.$$
 (5)

We can define the Newtonian potential of a function f:

$$u = E * f. \tag{6}$$

PROPOSITION 11. (PROPOSITION 2.3) Let $f \in L_p(\mathbb{R}^n)$ with 1 and <math>u = E * f. Then $-\triangle u = f$ in \mathbb{R}^n , and $u \in \mathring{L}^2_p(\mathbb{R}^n)$. Furthermore $\int_{\mathbb{R}^n} |\nabla^2 u|^p dx \leq c(n,p) \int_{\mathbb{R}^n} |f|^p dx$.

Proof. Note that $\int_{\mathbb{R}^n} |\nabla^2 u|^p dx \leq c(n, p) \int_{\mathbb{R}^n} |f|^p dx$ follows from the theory of singular integral operators.

Next notice that for $f \in C_0^{\infty}$, $-\Delta u = f$ holds by direct calculation. The general situation now follows from the above estimate and approximation argument.

Thus all we need to prove is the existence of $u_m \in C_0^\infty$ such that $\|\nabla^2(u_m - u)\|_{L_2(\mathbb{R}^n)} \longrightarrow 0$. Let $f_m \in C_0^\infty(\mathbb{R}^n), f_m \longrightarrow f$ in $L_p(\mathbb{R}^n)$. Define $v_m = E * f_m$. As f_m has compact support, we have

$$|\nabla^i v_m| \leqslant \frac{c(m,i)}{|x|^{n-2+i}}, \qquad x \in \mathbb{R}^n.$$
(7)

Now consider R > 0 and let φ_R be the standard cut-off function. We calculate

$$\int_{\mathbb{R}^n} |\nabla^2 (\varphi_R v_m - v_m)|^p \, \mathrm{d}x \leqslant c \left[\int_{B_R^c} |\nabla^2 v_m|^p + \frac{1}{R^p} \int_{B_{2R} \setminus B_R} |\nabla v_m|^p + \frac{1}{R^{2p}} \int_{B_{2R} \setminus B_R} |\nabla^2 v_m|^p \right] \\
\leqslant c \int_{B_R^c} |\nabla^2 v_m|^p + C(m) R^{n(1-p)}.$$
(8)

Thus for each m, we take R_m such that $\int_{\mathbb{R}^n} |\nabla^2(\varphi_{R_m} v_m - v_m)|^p dx < \frac{1}{m}$. Defining $u_m = \varphi_{R_m} v_m$ finishes the proof.

BIBLIOGRAPHY

[1] Gregory Seregin. Lecture Notes on Regularity Theory for the Navier-Stokes Equations. World Scientific, 2015.