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Based on �1.1�1.2 of [1]. Some �ne properties of Sobolev spaces, and basics of Newtonian
potentials.
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1. Sobolev Spaces

1.1. Lebesgue spaces

Lemma 1. (Lemma 1.1 of [1]) Let 16 p<1, then Lp(
) is the completion of C0
1(
) in Lp(
).

Proof.

1. We have 
=[Bn where Bn has center xn2
 rational and radius rn=
1

2
dist(xn;
c).

2. We also have 
 can be approximated from within by compact sets Cm such that the measure
of the di�erence 
¡Cm goes to zero.

3. Each Cm can be covered by �nitely many Bn's. Denote the union of these balls by 
m. We
now have dist (
m;
c)> 0 and kukLp(
¡
m)¡! 0.

4. Now mollify u�
m to get um2C01(
). �

Remark 2.

i. Note that 
 is only required to be a domain (open connected set). No regularity is needed
for @
.

ii. It is obvious that L1 is not the completion of C01.

Question 3. What about Lorentz spaces?

1.2. Sobolev spaces

Definition 4. (Sobolev spaces)

� Ws
k(
). Ls integrability of weak derivatives.

kukWs
k(
)=

X
i=0

k

kriuks;
: (1)

� W�s
k(
). Ws

k completion of C0
1(
).

� Ls
k(
). Ls integrability of rku.

kukLsk(
)= kr
kuks;
: (2)

� L�s
k(
). Ls

k completion of C0
1(
) in the following sense. [u] 2 L�sk(
) is an equivalence class

of functions satisfying

a) 8v; w2 [u], rk(v¡w)= 0, and

b) 9u02 [u] such that there exists um2C01(
) with krk(um¡u0)ks;
¡! 0.

It turns out that integrability of derivative implies local integrability of the function.

Theorem 5. (Theorem 1.1) u2Lsk(
)=)u2Ls; loc(
).

Proof.
It su�ces to prove for k= 1. Once this is done, the general case follows easily from induction.

By assumption, for any ' 2 C01(
) we have hu;r'i=¡
R


g ' for some g 2 Ls(
). We need to

prove, for any 
0b
, u2Ls(
0). The main di�culty lies in construction of the function u which
is well-de�ned in the whole 
.
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Now �x one such 
0. Let 0 < " < dist(
0; 
c). Let u" be the standard molli�cation of the
distribution u.

i. We �rst show that u"2L1(
0) for each ". To see this, de�ne l:L1(
0) 7!R by

l( ) := hu;  "i: (3)

As u 2D 0(
), there is m 2N[ f0g such that jl( )j6C k "kCm(
)6C(") k kL1(
0). Thus
by Riesz representation theorem we have u"2L1(
0).

ii. Now we easily see that g"=ru" in 
0.
iii. Next let u�0;" := u"¡ [u"]
0 where [u"]
0 is the average of u" in 
0. By Poincare's inequality

we have u�0;"¡!u0 in Ls(
0). ??? Naturally g=ru0 in 
0.
iv. Now we need to construct u, de�ned on 
, such that uj
0 =u0. Let 
1 c 
0 and b
.

Repeating the above we have u12Ls(
1) such that g=ru1 in 
1. As r(u1¡u0)=0 in 
0,
u1¡ u0=C0, a constant, in 
0. We re-de�ne u1¡C02Ls(
1)1 as the new u1. This can be
repeated for a nested sequence of sets 
0b
1b
2b ���b
. Note that in each 
m, we have
um=um+1=um+2= ���. Thus convergence is not an issue.

Finally, any other v with rv= g is just a constant away from the u just constructed. �

Remark 6. It is clear that we cannot expect u 2 Ls(
). For example let 
 =R and s=1, and
u= jxj.

Corollary 7. If um2C01(
) is Cauchy in Lsk, then there is u2Lsk(
) such that kum¡ukLsk(
)¡!
0.

Remark 8. The proof is similar to that of Theorem 5. Also note that 
 does not need to be
bounded here.

Corollary 9. (Proposition 1.2) For bounded domain 
, L�s
k(
)=W�s

k(
).

Proof. ClearlyW�sk(
)�L�sk(
). For the other direction, we need to show that for every [u]2L�sk(
),
there must exist a v 2 [u] such that v 2W�sk(
).

Let [u]2L�sk(
). By de�nition there is w 2Ls; loc(
) such that

i. For every other w 02 [u], rk(w¡w 0)= 0;

ii. There is a sequence wm2C01(
) such that rkwm¡!rkw in Ls(
).

As 
 is bounded, we have Friedrichs inequality:

kwm¡wm0kLs(
)6 c krkwm¡rkwm0kLs(
) (4)

which can be obtained through repeated application of Poincaré. Thus wm converges in Ls, to some
function v. It is clear that v 2 [u]. �

Remark 10. When n > 3, thanks to the Gagliardo-Nirenberg inequality kukp;
 6 c(n) kruk2;

where p= 2n

n¡ 2 , we see that L
�
2
1(
)�Lp(
), in the sense that for every [u]2L�21(
), there is a w2 [u]

such that w 2Lp.
When n= 2 and 
=R+

2 , we can still select a �good representative� for every [u] 2 L�21(R+
2 ) by

the criterion kvkL2(�)<1 where �=R� (0; 1). =)Any 
 with good boundary would be OK?

1. 
1 is bounded.
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2. Newtonian Potentials

Recall the fundamental solutions

E(x)=

8>><>>:
1
2�

ln
1
jxj n=2

1

!nn (n¡ 2)
1

jxjn¡2 n> 3
: (5)

We can de�ne the Newtonian potential of a function f :

u=E � f: (6)

Proposition 11. (Proposition 2.3) Let f 2Lp(Rn) with 1<p<1 and u=E � f. Then ¡4u= f
in Rn, and u2 L�p2(Rn). Furthermore

R
Rn jr2ujp dx6 c(n; p)

R
Rn jf jp dx.

Proof. Note that
R

Rn jr2ujp dx6 c(n; p)
R

Rn jf jp dx follows from the theory of singular integral
operators.

Next notice that for f 2C01, ¡4u= f holds by direct calculation. The general situation now
follows from the above estimate and approximation argument.

Thus all we need to prove is the existence of um2C01 such that kr2(um¡u)kL2(Rn)¡!0. Let
fm2C01(Rn), fm¡! f in Lp(Rn). De�ne vm=E � fm. As fm has compact support, we have

jrivmj6
c(m; i)

jxjn¡2+i ; x2Rn: (7)

Now consider R> 0 and let 'R be the standard cut-o� function. We calculate

Z
Rn
jr2('R vm¡ vm)jpdx 6 c

"Z
BR
c
jr2vmjp+

1
Rp

Z
B2RnBR

jrvmjp+
1

R2p

Z
B2RnBR

jr2vmjp
#

6 c

Z
BR
c
jr2vmjp+C(m)Rn(1¡p): (8)

Thus for each m, we take Rm such that
R

Rn jr2('Rm vm ¡ vm)jp dx <
1

m
. De�ning um= 'Rm vm

�nishes the proof. �
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