Math 497 R1 Winter 2018 Navier-Stokes Regularity

Lecture 1: Sobolev Spaces and Newtonian Potentials
Xinwei Yu

Jan. 10, 2018

Based on §1.1-1.2 of [1]. Some fine properties of Sobolev spaces, and basics of Newtonian

potentials.
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2 NAVIER-STOKES REGULARITY

1. SOBOLEV SPACES

1.1. Lebesgue spaces
LEMMA 1. (LEMMA 1.1 OF [1]) Let 1<p<oo, then L,(S2) is the completion of CG°(€2) in L,(2).

Proof.
1. We have Q=UDB,, where B,, has center z,, € {) rational and radius r,, = % dist(zy, Q°).

2. We also have 2 can be approximated from within by compact sets C,,, such that the measure
of the difference Q2 — C,,, goes to zero.

3. Each C,, can be covered by finitely many B,’s. Denote the union of these balls by 2,,. We
now have dist (2, Q) >0 and ||ul|, (o-q,,) — 0.

4. Now mollify u xq, , to get u, € C§°(Q). O

m

Remark 2.

i. Note that € is only required to be a domain (open connected set). No regularity is needed
for 012.

ii. It is obvious that L. is not the completion of C§°.

QUESTION 3. What about Lorentz spaces?

1.2. Sobolev spaces

DEFINITION 4. (SOBOLEV SPACES)
o WEQ). L, integrability of weak derivatives.

k

lullry =D IVulls0 (1)
i=0

o WEQ). WF completion of C§(Q).
o LKQ). L, integrability of Vku.

HUHL’;(Q): IVEulls 0. (2)

o LEQ). L¥ completion of C§(Q) in the following sense. [u] € LE(Q) is an equivalence class
of functions satisfying
a) Yv,w € [u], VF(v —w)=0, and
b) Jug € [u] such that there exists uy, € C§(Q) with || VE(um — uo)]|s,0 — 0.

It turns out that integrability of derivative implies local integrability of the function.

THEOREM 5. (THEOREM 1.1) u € L¥(Q) = u € L 10¢(0).

Proof.

It suffices to prove for kK =1. Once this is done, the general case follows easily from induction.
By assumption, for any ¢ € C§°(Q2) we have (u, Vo) = — [, g for some g € Ls(Q). We need to
prove, for any Q¢ € 2, u € Lg(2p). The main difficulty lies in construction of the function u which
is well-defined in the whole 2.



Now fix one such Qy. Let 0 < & < dist(Qp, Q). Let u. be the standard mollification of the
distribution w.

i. We first show that u. € Loo(£20) for each e. To see this, define [: L1(€p) — R by
() := (u, Ye). (3)

As u € D'(Q), there is m € NU {0} such that [I(¢)| < C ||¢e|lomq) < C(e) [|¥ ]| L1(q,)- Thus
by Riesz representation theorem we have u. € Loo(0).

ii. Now we easily see that g. = Vu, in ).

iii. Next let @g ¢ := us — [uc]q, where [uc]q, is the average of u. in y. By Poincare’s inequality
we have 1. — uo in Lg(€). 777 Naturally g= Vug in Q.

iv. Now we need to construct u, defined on €, such that u|g, =uo. Let 1 © Qp and €.
Repeating the above we have u; € Ls(€2;) such that g =Vu; in Q1. As V(u3 —up) =0 in Qo,
u1 — up = Cp, a constant, in Qy. We re-define u; — Cp € Ls(21)" as the new u;. This can be
repeated for a nested sequence of sets Qg€ Q) € Qo € --- €. Note that in each €,,, we have
U = Um+1 = Um++2 = --+. Thus convergence is not an issue.

Finally, any other v with Vv = g is just a constant away from the u just constructed. ([l

Remark 6. It is clear that we cannot expect u € L4(£2). For example let 2 =R and s = oo, and
u=|x|.

COROLLARY 7. If i, € C§°(Q) is Cauchy in LY, then there is ue L¥(Q) such that |um, — ull gy —
0.

Remark 8. The proof is similar to that of Theorem 5. Also note that 2 does not need to be
bounded here.

COROLLARY 9. (PROPOSITION 1.2) For bounded domain Q, L¥(Q) = WF(Q).

Proof. Clearly WF(Q)C L¥(Q). For the other direction, we need to show that for every [u] € L),
there must exist a v € [u] such that v € wWkEQ).
Let [u] € LE(Q) By definition there is w € Lg 1oc(£2) such that
i. For every other w’ € [u], V¥(w — w') = 0;
ii. There is a sequence wy, € C§°(Q?) such that V*w,, — VFw in L(Q).

As ) is bounded, we have Friedrichs inequality:
[win — W L) < € [ VFW0m = VFW000| L 02) (4)

which can be obtained through repeated application of Poincaré. Thus w,, converges in Lg, to some
function v. It is clear that v € [u]. O

Remark 10. When n > 3, thanks to the Gagliardo-Nirenberg inequality ||u|, o < c¢(n) [|[Vul2,0
where p:%, we see that L3(Q) C L,(€), in the sense that for every [u] € L3(€2), there is a w € [u]

such that w € L,,. )
When n =2 and Q = R2, we can still select a “good representative” for every [u] € L3(R%) by
the criterion [[v||,) < 0o where II=R x (0,1). == Any Q with good boundary would be OK?

1. €4 is bounded.



4 NAVIER-STOKES REGULARITY

2. NEWTONIAN POTENTIALS

Recall the fundamental solutions

% ln% n=2
E(z)= 1 1 N . (5)
wpn(n—2) |z|n—2 n>3
We can define the Newtonian potential of a function f:
u=FExf. (6)

PROPOSITION 11. (PROPOSITION 2.3) Let f € L,(R") with 1<p<oo andu=FEx f. Then —Au= f
in R™, and ue L3(R™). Furthermore [ ge IV2ulPdz <c(n, p) [ga |fIPde.

Proof. Note that [, |V2u|Pdz <c(n,p) [ re | [P dz follows from the theory of singular integral
operators.

Next notice that for f € C§°, —Awu = f holds by direct calculation. The general situation now
follows from the above estimate and approximation argument.

Thus all we need to prove is the existence of uy, € C§° such that ||V2(um — u)||1,mm) — 0. Let
fm € C°(R™), fm — f in L,(R™). Define vy, = E'* fi,. As fi, has compact support, we have

c(m, 1)

|Vivm| Sz

zeR™ (7)

Now consider R >0 and let ¢g be the standard cut-off function. We calculate

1 1
[V2(0RUm —vm)|Pdz < ¢ / |V2Um|p+—/ VU |P + —— V20, |P
/n Blc? Rp BQR\BR R2p BQR\BR
< e / V20 [P+ C(m) RP-P). (8)
Bf

Thus for each m, we take R,, such that fRn IV2(oR,, Vm — vm)|P do < % Defining u,, = ¢Rr,, Um
finishes the proof. OJ
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