
Paradigm Counting Problems

We solve paradigm problems using the method of generating functions.

1. The method of generating functions
� Problem to solve: A family of counting problems with a parameter n=0;1;2; ::: (for example, coloring

n balls). Let the answers be a0; a1; :::

� Relate a �generating function�, that is a function that �generates� all the answers, to the numbers:

� Ordinary generating function:

A(x) :=
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� Analyze the problem to

� Decide which generating function form is more convenient: A(x) or E(x).

� Find the generating function

¡ directly, or

¡ through obtaining an algebraic or di�erential equation for the function, and then solve
the equation.

� Obtain the answer through obtaining the Taylor expansion of the generating function.

2. Occupancy problems through generating functions
Basic idea: The generating function is a product of m factors where m is the number of

boxes, with each factor representing all possibilities for a box. More speci�cally, if i1; i2; :::;
are the numbers of balls allowed in the ith box, then the terms in the ith factor are xi1; xi2; :::.

� This basic idea applies well to the cases with distinct boxes.

� Extra work is needed when the boxes are identical.

2.1. Balls identical, boxes di�erent

� Ordinary generating functions.

Example 1. Find the generating function for the number of di�erent ways putting n identical balls into 4
di�erent boxes where the �rst box cannot be empty, the number of balls in the second box is a multiple of
3, the third box has at least 5 balls, and the fourth box has at most 3 balls.

Solution. We have

A(x) = (x+x2+ ���) (1+x3+x6+ ���) (x5+x6+ ���) (1+ x+x2+x3): (3)

Exercise 1. Find a100.

2.2. Balls di�erent, boxes di�erent

� Exponential generating functions.

Example 2. Find the generating function for the number of di�erent ways putting n di�erent balls into 4
di�erent boxes where the �rst box cannot be empty, the number of balls in the second box is a multiple of
3, the third box has at least 5 balls, and the fourth box has at most 3 balls.
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2.3. Balls di�erent, boxes identical

� In general, extra work is needed to apply the method of generating functions to problems with identical
boxes.

� Special cases that are relatively easy to do:

� Putting n di�erent balls into m identical boxes;

� Putting n di�erent balls into m identical boxes, and the boxes are not allowed to be empty.

2.4. Balls identical, boxes identical

� Identify the problem with a general integer solution problem.

3. Integer solution problems

3.1. Simple problems

� The problem:

x1+ ���+xm=n; ai< (6)xi< (6)bi: (5)

� Essentially the same as (take 6;6 as example): Putting n identical balls intom di�erent boxes, with
the number of balls in the ith box no less than ai and no more than bi.

� Solve by generating function: (still use 6;6)

A(x)= (xa1+ ���+xb1) (xa2+ ���+xb2)���(xam+ ���+xbm): (6)

Example 3. Find the number of solutions to

x1+x2+x3+x4= 20; ¡ 16x16 7; 26x26 15; 4<x3< 19; 56x4 (7)

using generating function.

Solution. The answer is given by the coe�cient of x20 in the expansion of

A(x) := (x¡1+ ���+x7) (x2+ ���+x15) (x5+ ���+x18) (x5+ ���) (8)

We calculate

A(x) = x¡1 (1+ ���+x8)x2 (1+ ���+x13)x5 (1+ ���+x13) x5 (1+ x+ ���)
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The coe�cient of x20 can be now easily found as

(9+3) (9+2) (9+1)

3!
¡ 1= 219: (10)



3.2. General problems

� The problem:

c1x1+ ���+ cmxm=n; ai< (6)xi< (6)bi: (11)

� Generating function approach:

� Equivalent problem:

y1+ ���+ ym=n; ci ai< (6)yi< (6)ci bi: (12)

� Essentially the same as (for 6; 6): Putting n identical balls into m di�erent boxes, with the
number of balls in the ith box satisfying:

i. is a multiple of ci;

ii. no less than ci ai;

iii. no more than ci bi.

4. Coloring problems

4.1. Simple coloring problems

� Coloring n di�erent balls with m colors.
Same as putting n di�erent balls into m di�erent boxes.

� Coloring n identical balls with m colors.
Same as putting n identical balls into m di�erent boxes.

4.2. Coloring problems with symmetry (Polya's theory)

� Coloring n balls with m colors, where the n balls are �in between� being all di�erent or all identical.
More speci�cally,

� when all the balls are di�erent, the symmetry group G= fig.
� when all the balls are identical, the symmetry group G=Pn, the group of all permutations of

f1; 2; :::; ng.
� Polya's theory.

Ans=
1
jGj

X
g2G

mc(g) (13)

where c(g) is the number of cycles of the permutation g.

Example 4. In how many ways can a 2� 2� 2 cube be constructed from eight 1� 1� 1 cubes if an
unlimited number of red, white, and blue cubes are available?

Solution. We see that this problem is equivalent to coloring the eight vertices of a cube with three
colors. Polya's theory then applies. For the 24 elements of the symmetry group G of the cube we have

� i: c(i) = 8;

� 6 rotations of 90 and 270 degrees around lines passing the centers of opposite faces. c(g)=2.

� 3 rotations of 180 degrees around lines passing the centers of opposite faces. c(g) = 4.

� 8 rotations of 120 and 240 degrees around the long diagonals. c(g)= 4.

� 6 rotations of 180 degrees around the lines passing the middle points of opposite edges. c(g)=4.

Thus the answer is given by

38+6� 32+3� 34+8� 34+6� 34
24

= 333: (14)

� Polya's theory to deal with extra requirements (how many yellow, how many red, etc.).
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