
Latin Squares

1 De�nition and examples

De�nition 1. (Latin Square) An n�n Latin square, or a latin square of order n, is a square array with
n symbols arranged so that each symbol appears just once in each row and each column.

Example 2. The following are Latin squares.

0@ 1 2 3
2 3 1
3 1 2

1A;
0BB@

I A Q E
A I E Q
Q E I A
E Q A I

1CCA: (1)

It is clear that we only need to study latin squares of order n where the symbols are 1; 2; :::; n.

Proposition 3. Any Latin square can be �normalized�, so that the �rst row and column are 1; 2; :::; n.

Example 4. Consider 0BB@
3 1 4 2
1 3 2 4
4 2 3 1
2 4 1 3

1CCA (2)

We �rst re-arrange the rows: 0BB@
1 3 2 4
2 4 1 3
3 1 4 2
4 2 3 1

1CCA: (3)

Then re-arrange the columns: 0BB@
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1CCA: (4)

Example 5. There are one normalized 2 � 2 Latin squares, one normalized 3 � 3 latin square, and four
normalized 4� 4 latin squares.

�
1 2
2 1

�
;

0@ 1 2 3
2 3 1
3 1 2

1A;
0BB@

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1CCA;
0BB@

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

1CCA;
0BB@

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1CCA;
0BB@

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

1CCA: (5)

Remark 6. The number of normalized latin squares for order 5 is 56, for order 6 is 9408, for order 7 is more
than 16 million. The number for order 11 is 48 digits. The number for order 12 is not known.
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2 Construction of Latin squares

There are several obvious ways of constructing Latin squares.

Theorem 7. Let n be a positive integer. Let A be the n-by-n array whose entry aij in row i and column j is

aij= bij+1; bij=(i¡ 1)+ (j ¡ 1) (mod n) (6)

Then A is a Latin square of order n with symbols f1; 2; :::; ng.

Proof. Exercise. �

Theorem 8. Let n be a positive integer. Let m be co-prime to n. Let A be the n-by-n array whose entry
aij in row i and column j is

aij= bij+1; bij=m (i¡ 1)+ (j ¡ 1) (mod n): (7)

Then A is a Latin square of order n with symbols f1; 2; :::; ng.

Proof. Exercise. �

Example 9. Consider the case n=4. Then the above methods both give0BB@
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1CCA: (8)

Exercise 1. How many di�erent normalized 5� 5 Latin squares can be constructed using Theorems 7 and 8?

In fact we have much freedom in constructing a Latin square. We now prove that we can simply start from
the �rst row 1; 2; :::; n, and then add one row at a time, as long as:

i. each row is a permutation of 1; 2; :::; n;

ii. no symbol is repeated in any column at any step.

Now we prove that this procedure always works, that is we won't get stuck before the square is �nished.

At the mth step, each column has already used m symbols from 1; 2; :::; n. Let the set of the remaining
symbols in the ith column be denoted Si. Then the procedure would be able to continue if and only if there
is a permutation �: f1; 2; :::; ng 7!f1; 2; :::; ng such that �(i)2Si.

We now turn this into a graph theoretic problem. Consider a graph of order 2 n, with vertices denoted 1L; :::;
nL and 1R; :::; nR. Whenever j 2 Si, we draw an edge between iL and jR. We do not draw any other edge.
Then the existence of the aforementioned permutation is equivalent to a �perfect matching�, that is n edges
that do not share any end points.

To show the existence of such matching, we invoke the following �Hall's marriage theorem�, whose proof is
postponed to the end of this section.
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Theorem 10. (Hall) Such n edges exist if and only if for every subset fi1; :::; ilg of vertices of f1L; :::; nLg,
the number of vertices adjacent to them (two vertices are adjacent if they are connected by an edge) is no
less than l.

In light of Theorem 10, all we need to show is that for any fi1; :::; ilg� f1; 2; :::; ng, the union Si1[ ��� [ Sil
has at least l elements. We show now that this condition is satis�ed. Notice that jSij= n¡m for every i.
Now if jSi1[ ��� [Silj< l, then there is one symbol in Si1[ ��� [Sil that is repeated at least n¡m+1 times
in Si1; :::; Sil. However this is not possible as at the beginning each symbol is repeated exactly n times, and
at each step we take away exactly one copy of 1; 2; :::; n, reducing the number of repetition exactly by one.
Therefore at mth step each symbol is repeated exactly n¡m times in S1; :::; Sn and would be repeated no
more than n¡m times in Si1; :::; Sil.

Thus ends the proof.

Proof. (of Hall's Marriage Theorem) The necessity of the condition is obvious. In the following we
prove su�ciency.

We prove through induction on n. When n= 1 the conclusion is obvious. Now assume that the conclusion
holds for 1; 2; :::; n. Consider a graph with vertices f1L; :::; (n+ 1)L; 1R; :::; (n+ 1)Rg satisfying the above
condition. There are two cases.

i. if for every l6n and every subset fi1; :::; ilg�f1L; :::; (n+1)Lg the number of adjacent vertices is at
least l+1, then we can �match up� the left vertices and right vertices as follows:

� Match up 1L with any adjacent vertex.

� Let G0 be the graph obtained by deleting these two vertices and the edges emanating from
them. Then G0 has 2 n vertices and still satis�es the assumption of the theorem. By induction
hypothesis we can match up the remaining vertices.

Exercise 2. Prove that G0 still satis�es the assumption.

ii. If there is l6n and a subset fi1; :::; ilg�f1L; :::; (n+1)Lg such that the number of adjacent vertices
is exactly l, then we can �match up� the vertices as follows.

� Let the l adjacent vertices be fr1; :::; rlg�f1R; :::; (n+1)Rg. As l6n by induction hypothesis
we can match up fi1; :::; ilg with fr1; :::; rlg.

� Delete these 2 l vertices and edges connected to them. What remains is a graph G0 with
2 (n + 1 ¡ l) vertices. We claim that G0 still satis�es the assumption of the theorem. Then
there is a subset fl1; :::; lkg � f1L; :::; (n + 1)Lg ¡ fi1; :::; ilg which has less than k adjacent
vertices. But then the subset fi1; :::; il; l1; :::; lkg violates this assumption in the original graph.
Contradiction. �

3 Orthogonal latin squares

De�nition 11. (Orthogonal latin squares) Two n�n latin squares are orthogonal if, when superimposed,
each of the n2 possible pairings of a symbol from each square appears exactly once.

Example 12. The following two latin squares are orthogonal:0@ 1 2 3
2 3 1
3 1 2

1A;
0@ 1 2 3

3 1 2
2 3 1

1A: (9)
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Exercise 3. Are the following 5� 5 latin squares orthogonal to each other?0BBBB@
A B C D E
C D E A B
E A B C D
B C D E A
D E A B C

1CCCCA;
0BBBB@

a b c d e
b c d e a
c d e a b
d e a b c
e a b c d

1CCCCA: (10)

Exercise 4. Prove that there are no orthogonal Latin squares of order 2.

Example 13. We want to test the e�ects of n di�erent quantities of water and n types of fertilizer on the
yield of wheat on a certain type of soil. We see that there are n2 possible combinations of water and fertilizer.
The test �eld is rectangular and subdivided into n2 plots, one for each of the n2 possible water-fertilizer
combinations. there is no reason to expect that soil fertility is the same throughout the �eld. Thus, it may
very well be that the �rst row is of high fertility, and therefore a higher yield of wheat will occur, which is not
due solely to the quantity of water and the type of fertilizer used on it. We are likely to minimize the in�uence
of soil fertility on the yield of wheat if we insist that each quantity of water occur no more than once in any
row and in any column, and similarly that each type of fertilizer occur no more than once in any row and in
any column. Thus the application of the n quantities of water on the n2 plots should determine a Latin square
of order n, and also the application of the n types of fertilizer should determine a Latin square B of order
n. Since all n2 possible water-fertilizer combinations are to be treated, when the two Latin squares A and B
are juxtaposed all n2 combinations should occur once. Thus the Latin squaresA and B are to be orthogonal.

Theorem 14. Let n be a prime. Let r; s 2 f1; 2; :::; n ¡ 1g be two di�erent numbers. De�ne two arrays
Ar=(aij

r ) and As=(aijs ) through

aij
r = bij

r +1; bij
r = r (i¡ 1)+ (j ¡ 1) (mod n); (11)

and

aij
s = bij

s +1; bij
s = s (i¡ 1)+ (j ¡ 1) (mod n): (12)

Then Ar; As are orthogonal Latin squares of order n with symbols f1; 2; :::; ng.

Proof. All we need to show is that each of the n2 possible pairs appear exactly once. This is equivalent to
each of the n2 possible pairs appear at most once. Thus we need to show that if

r (i¡ 1)+ (j ¡ 1) = r (k¡ 1)+ (l¡ 1) (mod n)
s (i¡ 1)+ (j ¡ 1) = s (k¡ 1)+ (l¡ 1) (mod n)

then i= r; j= s. Without loss of generality assume r > s. Then we have

(r¡ s) (i¡ 1)= (r¡ s) (k¡ 1) (mod n) (13)

As r¡ s2f1; 2; :::; n¡ 1g and n is prime, then there is u2f1; 2; :::; n¡ 1g such that u (r¡ s)=1 (mod n).
Multiplying both sides of (13) by u we have

i¡ 1= k¡ 1 (mod n) =) i= k: (14)

It now follows easily that j= l. �

Remark 15. We see that for the above construction to work, all we need are

i. r; n are co-prime. So that Ar is a Latin square;
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ii. s; n are co-prime. So that As is a Latin square;

iii. r; s are co-prime. So that Ar; As are orthogonal.

Exercise 5. Construct a pair of orthogonal Latin squares of order 7.

Exercise 6. Show that the construction method in Theorem 14 does not work for n=6.

Exercise 7. Let n be odd. De�ne A=(aij) and B=(bij) through

aij¡ 1= i+ j (modn); bij¡ 1= i¡ j (modn): (15)

Prove that A; B form a pair of orthogonal Latin squares.

Remark 16. It can be shown relatively easily that for every n that is not of the form 4 k+2 there exists at
least one pair of orthogonal Latin squares of order n. Euler conjectured that there are no orthogonal latin
square pairs when n=4 k+2 for k2N. He was only right about n=6. It was proved in 1959 by R. C. Bose,
S. S. Shrikhande, and E. T. Parker that there are orthogonal latin square pairs for all n=4 k+2 with k>2.
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