Chromatic Polynomials

Consider the following question: Given a graph G and k colors, how many different ways are
there to color G with these colors?

Definition and examples

Definition 1. (Chromatic Polynomial) Let G be a simple graph of order n with vertices marked vy, ...,
Un. For every k € N, let Pg(k) be the number of ways to color the graph G with k colors so that any two
vertices connected by an edge are colored differently. Pa(k) is called the chromatic polynomial of the graph G.

Remark 2. In other words, Pg(k) is the number of functions o from V ={vy,...,v,} to {1,2,..., k} so that
O'(Ui) 75 U(Uj) if {’Ui, Uj} ek.

Remark 3. It is clear that Pg(k) =0 when k < x(G). Thus any root to Pg(k) gives a lower bound for x(G).
The original motivation of Birkhoff to introduce the idea of chromaric polynomial in 1912 is to solve the
four-color problem as follows:

i. Characterize chromatic polynomials for planar graphs;
ii. Characterize the roots of these polynomials.

Unfortunately, to this day we are still stuck at i.
Example 4. Let N,, be the null graph of order n. We have Py, (k) =k".

Example 5. Let K, be the complete graph of order n. We have Pk, (k)=k (k—1) - (k—(n—1)), as there
are k colors available for vy, then k — 1 colors available for v, ... , k— (n — 1) colors available for v,,.

Exercise 1. Let G be any simple graph of order n. Then Pk, (k) < Pa(k) < Pn, (k).

Example 6. 'We try to calculate Pg(k) for the graph

U1

V4

1. Note that this is a motivational example. Later we will discuss better ways of calculating Pg(k) for graphs.



First we notice that Pg(1) =0 and Pg(2) =2. In general, for k> 2, let’s assume that one of the colors is red.
Then Pg(k) =k R(k) where R(k) is the number of ways coloring the graph with vy colored red. To calculate
R(k), we divide into two cases (and then apply the sum rule).

e v3 is also colored red. In this case vy has k — 1 choices and vy too. Thus we have (k — 1)2.

e w3 isnot colored red. In this case vs has k — 1 choices and v, v4 have (k — 2) choices each. Consequently
we have (k—1) (k —2)2.

Thus overall we have

Po(k)=k[(k—12+(k—1)(k—2)2 =k (k—1) (k* 3k +3) =k* — 4 k3 + 6 k% — 3 k. (1)

Remark 7. Note that we can become more confident of our calculation of Pg(k) by checking Pg(k) for
small values of k:

Pe(0)=0;  Pe(l)=1;  Pe(2)=2. (2)
Properties

Theorem 8. (Deletion-Contraction) Let G = (V, E) be a simple graph. Let e={a,b} € E. Let Gp be
the graph obtained from G by deleting the edge e, and let G be the graph obtained from G by identifying the
two vertices a,b?. Then

Pg(k) = Pep(k) — Pac(k). (3)

Proof. It is clear that Pg(k)= Pg,(k) — N (k) where
N (k) := Number of ways coloring G with k colors such that a,b are colored the same. (4)

It is now clear that N (k)= Pg (k). O
Example 9. We calculate Pg(k) for the graph

U1

V2
Us

U3
V4

through deletion-contraction. Take the edge {v1, vs}. It is easy to see that Gp is a chain, and G¢ can be
represented as a square cycle.

2. or “merging” a, b. Thus the edge e disappears. Also if both {c,a},{c, b} € E, then the two edges also “merge” into one edge
in the graph G¢.
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It is easy to see that
P, (k)=Fk(k—1)%
On the other hand, we have
Poo(k)=k[(k—1)2+(k—-1)(k—2)=k(k—1)(k*—=3k+3).
Thus we have

Pg(k)=Pg (k) — Poo(k)=k® =5 k*+ 10k — 10 k> + 4 k.

Exercise 2. Prove that the cycle with length n has Po, (k)= (k—1)"+ (—1)" (k —1). (Hint:3 )

Exercise 3. Let W,, be the wheel of n+ 1 vertices, that is a cycle of n vertices with the n + 1-th vertex connected to them

all. Find Pw, (k).

Exercise 4. Calculate Pg(k) for the following graphs.

G3

Answer: 4

Exercise 5. Prove the following “Two-Pieces Theorem”.

Theorem. (The Two-Pieces Theorem) Let the vertex set of G be partitioned into disjoint sets V1, Va
such that no edges in G joins a vertex in Vi to a vertex in Va. Let G1, G2 be the subgraphs generated by V1

and Va respectively. Then Pg(k) = Pg, (k) Pa,(k).

Theorem 10. Pg(k) is a polynomial of k with degree n and integer coefficients.

3. Induction.
4. G1: kP —10k* 4+ 35k3 — 50k% 4+ 24k; Go: kP —4k* +6 k3 —4k? + k; Ga: kP —8k* + 24 k3 — 31 k% + 14k.



Proof. We prove through induction on the order n. When n =1 the claim is clearly true. Now we assume
that Pg(k) is a polynomial of k with degree n and integer coefficients for every simple graph of order n.

Let G = (V, E) be a simple graph of order n+ 1. If F =@ then G is the null graph and Pg(k) = k"L, If
E+o,let e={a,b} € E. By the deletion-contraction theorem we have

Pg(k) = Pc,(k) — Pa(k). (8)

Note that as G¢ has order n, Pg.(k) is a polynomial of degree n. On the other hand, Gp is a simple graph
of order n+ 1 but with one less edge than G.

If Gp has no edges then Pg,(k)=k""! and the proof ends. If not, application of the deletion-contraction
theorem to Gp yields

Po(k) = Papp(k) = Pape(k) — Pac(k) (9)

with Pg, (k) also a degree n polynomial.

It is clear now that we can keep doing this until there is no edge left. At the end of the day we have
PG(k) = PGDwD(k) - PGDch(k) -t PGDC(k) - PGc(k) (10)

with Pg, . (k) =k""! and all the other polynomials of degree n.
Thus ends the proof. O

Exercise 6. Prove that the constant term of Pg(k) is 0.
Exercise 7. Prove that the lead coefficient of Pg(k) is always 1.
Exercise 8. Prove that unless Pg (k) =k"™, the sum of the coefficients is zero.
Exercise 9. Prove that the coefficient of k™1 in Pg(k) is the negative of the number of edges.
Exercise 10. Show that the following cannot be chromatic polynomials.
a) k®—1;
b) k> —k3+2k;
c) 2k3—3k3
d) K2+ K2+ k;
e) k3 —k2+k;
f) k*—3k3+3k32;
g) K%+ k8 — kT —KS.
Exercise 11. Prove that Pg(k) <k (k—1)"~! for any positive integer k, if G is connected with n vertices.
Exercise 12. Prove or disprove: If G’ is a subgraph of G, then Pg/(k)| Pg(k).

Exercise 13. Prove that if K, is a subgraph of G, then k(k —1) -+ (k —r+1)| Pg(k). (Hint:" )

5. Note that Pg(i)=0 for i=0,1,2,...,7 — 1.
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