
Chromatic Polynomials

Consider the following question: Given a graph G and k colors, how many di�erent ways are
there to color G with these colors?

De�nition and examples

De�nition 1. (Chromatic Polynomial) Let G be a simple graph of order n with vertices marked v1; :::;
vn. For every k 2 N, let PG(k) be the number of ways to color the graph G with k colors so that any two
vertices connected by an edge are colored di�erently. PG(k) is called the chromatic polynomial of the graph G.

Remark 2. In other words, PG(k) is the number of functions � from V = fv1; :::; vng to f1; 2; :::; kg so that
�(vi) =/ �(vj) if fvi; vjg2E.

Remark 3. It is clear that PG(k)=0 when k<�(G). Thus any root to PG(k) gives a lower bound for �(G).
The original motivation of Birkho� to introduce the idea of chromaric polynomial in 1912 is to solve the
four-color problem as follows:

i. Characterize chromatic polynomials for planar graphs;

ii. Characterize the roots of these polynomials.

Unfortunately, to this day we are still stuck at i.

Example 4. Let Nn be the null graph of order n. We have PNn(k)= kn.

Example 5. Let Kn be the complete graph of order n. We have PKn(k)=k (k¡1) ��� (k¡ (n¡ 1)), as there
are k colors available for v1, then k¡ 1 colors available for v2, ... , k¡ (n¡ 1) colors available for vn.

Exercise 1. Let G be any simple graph of order n. Then PKn
(k)6PG(k)6PNn

(k).

Example 6. 1We try to calculate PG(k) for the graph

v1

v2

v3
v4

1. Note that this is a motivational example. Later we will discuss better ways of calculating PG(k) for graphs.
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First we notice that PG(1)=0 and PG(2)=2. In general, for k > 2, let's assume that one of the colors is red.
Then PG(k)=kR(k) where R(k) is the number of ways coloring the graph with v1 colored red. To calculate
R(k), we divide into two cases (and then apply the sum rule).

� v3 is also colored red. In this case v2 has k¡ 1 choices and v4 too. Thus we have (k¡ 1)2.

� v3 is not colored red. In this case v3 has k¡1 choices and v2; v4 have (k¡2) choices each. Consequently
we have (k¡ 1) (k¡ 2)2.

Thus overall we have

PG(k) = k [(k¡ 1)2+(k¡ 1) (k¡ 2)2] = k (k¡ 1) (k2¡ 3 k+3)= k4¡ 4 k3+6 k2¡ 3 k: (1)

Remark 7. Note that we can become more con�dent of our calculation of PG(k) by checking PG(k) for
small values of k:

PG(0)=0; PG(1)=1; PG(2)=2: (2)

Properties

Theorem 8. (Deletion-Contraction) Let G= (V ; E) be a simple graph. Let e= fa; bg 2E. Let GD be
the graph obtained from G by deleting the edge e, and let GC be the graph obtained from G by identifying the
two vertices a; b2. Then

PG(k)=PGD(k)¡PGC(k): (3)

Proof. It is clear that PG(k)=PGD(k)¡N(k) where

N(k) :=Number of ways coloring G with k colors such that a; b are colored the same. (4)

It is now clear that N(k) =PGC(k). �

Example 9. We calculate PG(k) for the graph

v1

v2

v3
v4

v5

through deletion-contraction. Take the edge fv1; v3g. It is easy to see that GD is a chain, and GC can be
represented as a square cycle.

2. or �merging� a; b. Thus the edge e disappears. Also if both fc; ag; fc; bg 2E, then the two edges also �merge� into one edge
in the graph GC.
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v1
v4

v2

v5

v3

v1= v3 v4

v2v5GD GC

It is easy to see that

PGD(k)= k (k¡ 1)4: (5)

On the other hand, we have

PGC(k)= k [(k¡ 1)2+(k¡ 1)(k¡ 2)2] = k (k¡ 1) (k2¡ 3 k+3): (6)

Thus we have

PG(k)=PGD(k)¡PGC(k)= k5¡ 5 k4+ 10 k3¡ 10 k2+4 k: (7)

Exercise 2. Prove that the cycle with length n has PCn
(k)= (k¡ 1)n+(¡1)n (k¡ 1). (Hint:3 )

Exercise 3. LetWn be the wheel of n+1 vertices, that is a cycle of n vertices with the n+1-th vertex connected to them
all. Find PWn

(k).

Exercise 4. Calculate PG(k) for the following graphs.

G1 G2
G3

Answer: 4

Exercise 5. Prove the following �Two-Pieces Theorem�.

Theorem. (The Two-Pieces Theorem) Let the vertex set of G be partitioned into disjoint sets V1; V2
such that no edges in G joins a vertex in V1 to a vertex in V2. Let G1; G2 be the subgraphs generated by V1
and V2 respectively. Then PG(k) =PG1

(k)PG2
(k).

Theorem 10. PG(k) is a polynomial of k with degree n and integer coe�cients.

3. Induction.
4. G1: k5¡ 10k4+ 35k3¡ 50k2+ 24k; G2: k5¡ 4 k4+6 k3¡ 4 k2+ k; G3: k5¡ 8 k4+ 24k3¡ 31k2+ 14k.
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Proof. We prove through induction on the order n. When n=1 the claim is clearly true. Now we assume
that PG(k) is a polynomial of k with degree n and integer coe�cients for every simple graph of order n.

Let G= (V ; E) be a simple graph of order n+ 1. If E =? then G is the null graph and PG(k) = kn+1. If
E=/ ?, let e= fa; bg2E. By the deletion-contraction theorem we have

PG(k)=PGD(k)¡PGC(k): (8)

Note that as GC has order n, PGC(k) is a polynomial of degree n. On the other hand, GD is a simple graph
of order n+1 but with one less edge than G.

If GD has no edges then PGD(k) = kn+1 and the proof ends. If not, application of the deletion-contraction
theorem to GD yields

PG(k) =PGDD(k)¡PGDC(k)¡PGC(k) (9)

with PGDC(k) also a degree n polynomial.

It is clear now that we can keep doing this until there is no edge left. At the end of the day we have

PG(k)=PGD���D(k)¡PGD���DC(k)¡ ��� ¡PGDC(k)¡PGC(k) (10)

with PGD���D(k)= kn+1 and all the other polynomials of degree n.

Thus ends the proof. �

Exercise 6. Prove that the constant term of PG(k) is 0.

Exercise 7. Prove that the lead coe�cient of PG(k) is always 1.

Exercise 8. Prove that unless PG(k)= kn, the sum of the coe�cients is zero.

Exercise 9. Prove that the coe�cient of kn¡1 in PG(k) is the negative of the number of edges.

Exercise 10. Show that the following cannot be chromatic polynomials.

a) k8¡ 1;

b) k5¡ k3+2 k;

c) 2 k3¡ 3 k2;

d) k3+ k2+ k;

e) k3¡ k2+ k;

f) k4¡ 3 k3+3 k2;

g) k9+ k8¡ k7¡k6.

Exercise 11. Prove that PG(k)6 k (k¡ 1)n¡1 for any positive integer k, if G is connected with n vertices.

Exercise 12. Prove or disprove: If G0 is a subgraph of G, then PG0(k)jPG(k).

Exercise 13. Prove that if Kr is a subgraph of G, then k (k¡ 1) ��� (k¡ r+1)jPG(k). (Hint:5 )

5. Note that PG(i)= 0 for i=0; 1; 2; :::; r ¡ 1.
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