
Chromatic and Clique Numbers

De�nition 1. (Chromatic Number) Let G be a graph. The chromatic number �(G) is the smallest number
of colors needed to color the vertices such that any two ends of an edge are colored di�erently.

Theorem 2. Let G be a graph of order n> 1. Then

16 �(G)6n: (1)

Furthermore, �(G) =n if and only if G=Kn.

Proof. (1) is trivial. It is also clear that �(Kn) = n. In the following we prove that �(G) = n=)G=Kn.
Assume otherwise. Then there is one vertex with degree at most n¡2. We denote this vertex by vn and the
other vertices v1; :::; vn¡1, so that there is no edge between vn and vn¡1. We color v1; :::; vn¡1 with n ¡ 1
colors C1; :::; Cn¡1, and vn with Cn¡1.

Now let e=fvi; vjg2E be arbitrary. If i; j2f1; :::; n¡1g, then clearly the two vertices are colored di�erently.
On the other hand, if one of them is vn, then the other cannot be vn¡1 and they are still colored di�erently.

Thus we have colored G with n¡ 1 colors. Contradiction. �

Exercise 1. Prove that �(G)= 1 if and only if G is the null graph, that is a graph with no edges.

De�nition 3. (Clique Number) Let G be a graph. Its clique number C(G) is de�ned to be the largest
p2N such that the order p complete graph Kp is a subgraph of G.

Exercise 2. Prove that �(G)>C(G).

Example 4. It is possible for �(G)>C(G). Let G=(V ;E) where V =fa; b; c; d; eg and E=ffa; bg; fb; cg;
fc; dg; fd; eg; fe; agg. Then we have C(G) = 2 but �(G)= 3.

Theorem 5. Let G=(V ;E) be a graph. Then

�(G)6�+1 (2)

where � :=maxv2V deg(v) is the maximum degree of the vertices of G.

Proof. Let jV j=n. We prove the claim through induction on n. It is clear that the claim holds when n=1;
2 or even 3. Thus in the following we prove n=)n+1.

Assume that the claim is true for any graph with n vertices. Let G=(V ;E) with V =fv1; :::; vn+1g. Let G0
be the graph obtained from G through erasing vn+1 and all edges connected to it. Then G0 is of order n,
and furthermore �06�. Consequently G0 can be colored by at most �+1 colors.

Now we add vn+1 and the corresponding edges back. As deg(vn+1)6�, there are at most � vertices from
fv1; :::; vng connected to vn+1. Consequently there is a color among the �+1 colors that is not used on the
vertices connected to vn+1, and thus can be used to color vn+1. �

Example 6. Clearly �(G)=�+1 for G=Kn.
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Exercise 3. Show that there is G=/ Kn for any n, with �(G) =�+1.

Theorem 7. (Brooks) 1Assume that G is connected but is neither a complete graph nor a cycle graph of
odd order, then �(G)6�.

Exercise 4. Show that the theorem does not hold if we drop the assumption of connectedness.

Proof. 2First we prove the claim when �=1 or 2.

When �=1, the only possibility of G is G=K2.

When �=2, we color G as follows. Start from a vertex a with degree 2. We color it red and color the two
neighbours b; c green. Now if deg(b) = deg(c) = 1, we have G to be exactly this order three graph. If one of
the degrees is 2, we can color the neighbours red and repeat the above. This procedure will halt if

� we have colored all the vertices with two colors; or

� The new neighbour is a vertex that has already been colored. In this case either this new neighbour
has degree three, or G becomes a cycle.

In the following we prove the theorem when �= 3 and leave the general case as an exercise. We prove by
induction on the order n of G. When n = 4 clearly three colors su�ce. Now assume that any graph with
order n and maximum degree 3 can be colored with three colors. Consider a graph G of order n+1.

Let x be a vertex in G such that deg(x) is (one of) the smallest. Let G0 be the graph obtained by deleting
the vertex x and all the edges containing x. By the induction hypothesis G0 can be colored with three colors.
If deg(x) 6 2, then clearly we can color x using one of the three colors. Thus in the following we assume
deg(x) = 3.

Let the vertices connected to x be x1; x2; x3. If in the coloring of G0 they are already colored by two or less
colors then we can color x by the third color. If not, we will show in the following that we can always re-
color G0 so that x1; :::; x3 are colored by at most two colors.

Assume that x1 is colored red, x2 green, x3 yellow. We also denote by Gr;g
0 the graph consisting of all the

vertices in G0 colored either red or green, and all the edges between them. Denote Gg;y
0 ; Gy;r

0 similarly.

First we claim that there is a path inGr;g
0 connecting x1 and x2. Assume otherwise. Let V1 be all the vertices

in Gr;g
0 that is connected to x1 by edges in Gr;g

0 , then none of the vertices in V1 is connected to x2 in Gr;g
0 . In

other words, if a vertex in V1 is connected to x2 in G0, then along the path there is a vertex colored yellow.
Now we see that we can re-color G0 as follows:

i. For vertices in V1, color every red vertex green and every green vertex red;

ii. For other vertices in G, do not change the coloring.

Then we have a three-coloring of G0 with x1; x2 both green and x3 yellow, and can color x red to obtain a
three-coloring of G.

Now assume that there is a path Lr;g connecting x1 and x2 in Gr;g
0 . Similarly there is a path Lg;y in Gg;y

0

connecting x2; x3, and there is a path Ly;r in Gy;r
0 connecting x3; x1. We notice that

1. R. L. Brooks: On coloring the nodes of a network, Proc. Cambridge Philos. Soc., 37 (1941), 194�197.
2. The proof is adapted fromL. S. Melnikov and V. G. Vizing, New proof of Brooks' theorem, Journal of Combinatorial Theory
7, 289�290, 1969.
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These paths do not �cross� one another at other vertices than x1; x2; x3. To see this, assume
that there is a vertex y di�erent from x1; x2; x3 belonging to Lr;g and Lg;y. Thus y must be
colored green. Then its two neighbours in Lr;g must be colored red and its two neighbours in
Lg;y must be colored yellow. But this means deg(y)> 4. Contradiction.

Now consider an arbitrary vertex y on Lr;g that is di�erent from x1; x2 (if there is any such vertex). Assume
that it is colored green. Then both its neighbours in Lr;g are colored red. As the degree at this vertex is 3,
it is connected to one more vertex in G0. If this vertex belongs to Gr;g

0 then it must also be colored red. Now
we re-color y be yellow. This breaks the path Lr;g and consequently the resulting graph can be further re-
colored so that x1; x2 are of the same color.

Now we are left with the following case: Every vertex on Lr;g that is di�erent from x1; x2 is connected to a
vertex that is colored yellow, and similar claims hold for Lg;y and Ly;r. This implies, noticing that there are
already three edges from x1; x2; x3, that Lr;g is the only path connecting x1; x2 in Gr;g 0, and similar claims
hold for Lg;y and Ly;r.

Now the situation we need to deal with is as follows. There is a unique path Lr;g connecting x1; x2 with the
vertices along the path colored red and green alternatively, a unique path Lg;y connecting x2; x3 in with the
vertices colored green and yellow alternatively, and a unique path Ly;r connecting x3; x1 with the vertices
along it colored yellow and red alternatively. Since G does not contain K4, at least one of these paths has
length >1. Assume that it is Lr;g. Then there is a vertex y12Lr;g such that it is connect to x1 and y22Lr;g
connected to x2. Clearly y1 is green and y2 is red.

We re-color G0 as follows.

i. Along Ly;r, color red vertices yellow and yellow vertices red.

ii. Leave the colors of other vertices unchanged.

This is also a legitimate three-coloring of G0, and x1 is now yellow. Now let L be an arbitrary path in G0 from
x3 to x2. We see that there is at least one vertex on L that is colored yellow. In other words, the path Lr;g
does not exist anymore, and we can further re-color G0 to make x3 green. Now x can be colored yellow. �

Exercise 5. Color the following two graphs with three colors.

Exercise 6. Prove Theorem 7 for the general case �> 3.

Remark 8. Mycielski showed that there are triangle-free graphs with an arbitrarily high chromatic number.
For example, the Grötzsch graph (see below) has �(G)= 4.
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Figure 1. the Grötzsch graph
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