Chromatic and Clique Numbers

Definition 1. (Chromatic Number) Let G be a graph. The chromatic number x(G) is the smallest number
of colors needed to color the vertices such that any two ends of an edge are colored differently.

Theorem 2. Let G be a graph of order n>1. Then
1<X(G) <n. 1)

Furthermore, x(G) =n if and only if G =K,

Proof. (1) is trivial. It is also clear that x(K,)=mn. In the following we prove that x(G)=n= G = K,,.
Assume otherwise. Then there is one vertex with degree at most n — 2. We denote this vertex by v, and the
other vertices v, ..., v, —1, so that there is no edge between v, and v,_1. We color vy, ..., v,,—1 with n — 1
colors C4, ..., C,,_1, and v,, with C,,_1.

Now let e={v;,v;} € E be arbitrary. If 4, j €{1,...,n — 1}, then clearly the two vertices are colored differently.
On the other hand, if one of them is v, then the other cannot be v, _1 and they are still colored differently.

Thus we have colored G with n — 1 colors. Contradiction. O

Exercise 1. Prove that x(G)=1 if and only if G is the null graph, that is a graph with no edges.

Definition 3. (Clique Number) Let G be a graph. Its clique number C(G) is defined to be the largest
p € N such that the order p complete graph K, is a subgraph of G.

Exercise 2. Prove that x(G) > C(G).

Example 4. It is possible for x(G)>C(G). Let G=(V, E) where V={a,b,c,d,e} and E={{a,b}, {b, c},
{c,d},{d,e}, {e,a}}. Then we have C(G)=2 but x(G)=3.

Theorem 5. Let G=(V,E) be a graph. Then
X(@)<A+1 (2)

where A :=max,cydeg(v) is the mazimum degree of the vertices of G.

Proof. Let |V |=n. We prove the claim through induction on n. It is clear that the claim holds when n=1,
2 or even 3. Thus in the following we prove n=-n+ 1.

Assume that the claim is true for any graph with n vertices. Let G= (V, E) with V ={vy, ..., up41}. Let G’
be the graph obtained from G through erasing v,.1 and all edges connected to it. Then G’ is of order n,
and furthermore A’ < A. Consequently G’ can be colored by at most A + 1 colors.

Now we add v,,+1 and the corresponding edges back. As deg(v,4+1) <A, there are at most A vertices from
{v1, ..., vn } connected to v, 1. Consequently there is a color among the A 4 1 colors that is not used on the
vertices connected to v, 11, and thus can be used to color vy, 4. O

Example 6. Clearly x(G)=A+1 for G=K,,.



Exercise 3. Show that there is G # K, for any n, with x(G) =A + 1.

Theorem 7. (Brooks) 'Assume that G is connected but is neither a complete graph nor a cycle graph of
odd order, then x(G) <A.

Exercise 4. Show that the theorem does not hold if we drop the assumption of connectedness.

Proof. 2First we prove the claim when A =1 or 2.
When A =1, the only possibility of G is G = Ko.

When A =2, we color G as follows. Start from a vertex a with degree 2. We color it red and color the two
neighbours b, ¢ green. Now if deg(b) = deg(c) =1, we have G to be exactly this order three graph. If one of
the degrees is 2, we can color the neighbours red and repeat the above. This procedure will halt if

e we have colored all the vertices with two colors; or

e The new neighbour is a vertex that has already been colored. In this case either this new neighbour
has degree three, or G becomes a cycle.

In the following we prove the theorem when A =3 and leave the general case as an exercise. We prove by
induction on the order n of G. When n = 4 clearly three colors suffice. Now assume that any graph with
order n and maximum degree 3 can be colored with three colors. Consider a graph G of order n+ 1.

Let x be a vertex in G such that deg(x) is (one of) the smallest. Let G’ be the graph obtained by deleting
the vertex z and all the edges containing x. By the induction hypothesis G’ can be colored with three colors.
If deg(x) < 2, then clearly we can color x using one of the three colors. Thus in the following we assume

deg(z) =3.

Let the vertices connected to x be x1, z2, z3. If in the coloring of G’ they are already colored by two or less
colors then we can color z by the third color. If not, we will show in the following that we can always re-
color G’ so that w1, ..., 3 are colored by at most two colors.

Assume that z; is colored red, z green, 3 yellow. We also denote by G;. , the graph consisting of all the

vertices in G’ colored either red or green, and all the edges between them. Denote G} ,, G - similarly.

First we claim that there is a path in G,'pyg connecting 1 and x2. Assume otherwise. Let V4 be all the vertices
in G, that is connected to 21 by edges in . 4, then none of the vertices in V is connected to 2 in G}, 4. In
other words, if a vertex in V; is connected to xs in G’, then along the path there is a vertex colored yellow.

Now we see that we can re-color G’ as follows:
i. For vertices in Vi, color every red vertex green and every green vertex red;
ii. For other vertices in GG, do not change the coloring.

Then we have a three-coloring of G’ with 1, 72 both green and z3 yellow, and can color x red to obtain a
three-coloring of G.

Now assume that there is a path L, ; connecting x; and 3 in Gy ,. Similarly there is a path L, , in Gy,
connecting x2, 3, and there is a path L, , in Gz/w‘ connecting x3,x1. We notice that
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These paths do not “cross” one another at other vertices than x1, x2, 3. To see this, assume
that there is a vertex y different from x, z2, 3 belonging to L, 4 and L, ,. Thus y must be
colored green. Then its two neighbours in L, , must be colored red and its two neighbours in
L,,, must be colored yellow. But this means deg(y) >4. Contradiction.

Now consider an arbitrary vertex y on L, 4 that is different from w1, 25 (if there is any such vertex). Assume
that it is colored green. Then both its neighbours in L, 4 are colored red. As the degree at this vertex is 3,
it is connected to one more vertex in G'. If this vertex belongs to G, 4 then it must also be colored red. Now
we re-color y be yellow. This breaks the path L, , and consequently the resulting graph can be further re-
colored so that x1, x5 are of the same color.

Now we are left with the following case: Every vertex on L, 4 that is different from 1, x5 is connected to a
vertex that is colored yellow, and similar claims hold for L, , and L, . This implies, noticing that there are
already three edges from x1, x2, x3, that L, 4 is the only path connecting z1, 22 in G, 4, and similar claims
hold for Ly , and L ..

Now the situation we need to deal with is as follows. There is a unique path L, 4 connecting x1, x> with the
vertices along the path colored red and green alternatively, a unique path L, , connecting x9, x3 in with the
vertices colored green and yellow alternatively, and a unique path L, , connecting x3, 1 with the vertices
along it colored yellow and red alternatively. Since G does not contain K4, at least one of these paths has
length >1. Assume that it is L, 4. Then there is a vertex y1 € L, 4 such that it is connect to 1 and y2 € L, 4
connected to xa. Clearly y; is green and ys is red.

We re-color G’ as follows.
i. Along Ly ., color red vertices yellow and yellow vertices red.
ii. Leave the colors of other vertices unchanged.

This is also a legitimate three-coloring of G’, and x1 is now yellow. Now let L be an arbitrary path in G’ from
23 to 2. We see that there is at least one vertex on L that is colored yellow. In other words, the path L,
does not exist anymore, and we can further re-color G’ to make x3 green. Now z can be colored yellow. [

Exercise 5. Color the following two graphs with three colors.

Exercise 6. Prove Theorem 7 for the general case A > 3.

Remark 8. Mycielski showed that there are triangle-free graphs with an arbitrarily high chromatic number.
For example, the Grotzsch graph (see below) has x(G) =4.



Figure 1. the Grotzsch graph
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