
Counting with Symmetry

� Counting using Burnside's Lemma;

1. Identify the set X ;

2. Identify the group G that acts on X;

3. For every g, count how many x2X satis�es gx=x, that is calculate jXg j where Xg := fx2Xj
g x=xg;

4. The answer, the number of orbits, is given by

1

jGj
X
g2G

jXg j: (1)

� Counting using Polya's theory. Polya's theory applies to the problem of counting how many ways
there are to color a device with symmetry using m colors.

1. Identify the group G of allowed operations;

2. Let n be the number of objects (in one device) that are getting colored. Then every g2G is a
permutation on f1;2; :::; ng. Write every g2G in �cyclic form�, count the number of cycles c(g).

3. The answer is given by
1
jGj

X
g2G

mc(g): (2)

� Examples.

Example 1. Let p be an odd prime. How many ways are there to color the edges of a regular p-gon
with m colors if both rotation and �ipping are allowed?

Solution. We use Polya's theory. The symmetry group for a regular p-gon with p an odd prime
consists of

� The identity i=(1)(2)���(p). Thus c(i)= p.

� The p¡ 1 rotations of 2�

p
;
4�

p
; :::;

2 (p¡ 1) �
p

. As p is prime, each such rotation consists of only

one cycle of length p. Thus c(g)= 1 for each of them.

� The p �ippings around the line passing a vertex and the middle of the opposite edge. The
cyclic form is (1)(2 (p¡ 1))(3 (p¡ 2))��� so c(g) = p+1

2
for them.

So the answer is
mp+ pm(p+1)/2+(p¡ 1)m

2 p
: (3)

Exercise 1. Let p; q be odd primes. Let n= p q. How many ways are there to color the edges of a regular n-gon
with m colors if only rotation is allowed?

Exercise 2. (If you know elementary number theory) Prove that 2 pjmp+ pm(p+1)/2+(p¡ 1)m for all m2N.

Example 2. A decimal sequence is a sequence whose digits are 0,1,2,...,9. The digits 0, 1, 6, 8, 9
become 0, 1, 9, 8, 6 respectively, when they are turned upside down. We see that two decimal sequences
are equivalent if one can be transformed into the other by a 180 degree rotation. Find the number of
di�erent n-digit decimal sequences.

Wrong solution. Let X be all n-digit decimal sequences, there are 10n such sequences. The group
G of allowed operations has two elements, identity i, and the 180 degree rotation r.

� Obviously Xi=X so jXij= 10n;

� Xr. It is clear that any decimal sequence in Xr only consists of 0; 1; 9; 8; 6.

¡ n=2 k+1, odd. In this case the middle digit can be 0; 1; 8 and the last k digits is the
180 degree rotation of the �rst k digits. Thus there are 3� 5k such sequences.



¡ n=2 k, even. In this case the last k digits is the 180 degree rotation of the �rst k digits.
Thus there are 5k such sequences.

Thus

Ans=

8><>:
1
2
(10n+3� 5k) n=2 k+1

1
2
(10n+5k) n=2 k

: (4)

We note that clearly the answer is not an integer in either case!!

Solution. The mistake we made in the above �wrong solution� is that G does not �act� on X. If a
sequence involves 2,3,4,5, or 7, then rotating it does not yield another sequence in X. To �x this, we
de�ne X to be n-digit sequences consisting of 0,1,9,8,6 only. Application of Burnside's Lemma now
gives the number of n-digit sequences consisting of 0,1,9,8,6 only:

1
2
(5n+3� 5k) n=2 k+1

1

2
(5n+5k) n=2 k

: (5)

The �nal answer is then

10n¡ 5n+

8><>:
1
2
(5n+3� 5k) n=2 k+1

1

2
(5n+5k) n=2 k

: (6)

Exercise 3. Find the number of di�erent n-digit numbers under the same symmetry.

Example 3. 1How many di�erent ways are there to color the vertices of a pyramid (that is free to
move in space) with white and blue such that three vertices are white and two are blue? Use Polya's
theory to solve this.

Solution. First we identify the symmetry group of a pyramid. We notice that among the 5 vertices,
the �top� vertex is special. Therefore the symmetry group of a pyramid is a subgroup of the symmetry
group of the base square. Furthermore we notice that ��ipping� is not allowed here. Thus

G= fi; r1; r2; r3g (7)

where r1; r2; r3 are counter-clockwise rotations of 90, 180, 270 degrees around the line passing the �top�
vertex and the center of the �base� square. Now mark the top vertex 1 and the base vertices 2; 3; 4; 5
counterclockwise.

We have

� i=(1)(2)(3)(4)(5) yields (w+ b)5;

� r1=(1)(2345) yields (w+ b) (w4+ b4);

� r2=(1)(24)(35) yields (w+ b) (w2+ b2)2;

� r3=(1)(2543) yields (w+ b) (w4+ b4).

Therefore the answer is the coe�cient of w3 b2 in the expansion of

(w+ b)5+2 (w+ b) (w4+ b4) + (w+ b) (w2+ b2)2

4
=3: (8)

Example 4. 2Show that if n is a positive integer, then 24 divides n8+ 17n4+6n2.

1. http://www.math.ualberta.ca/~isaac/math421/w06/fn_review.pdf.
2. http://www.math.ualberta.ca/~isaac/math421/w06/fn_review.pdf.



Proof. Let's color the vertices of a cube by n colors. Recall the symmetry group of a cube (as a
permutation group of the eight vertices):

� i=(1)(2)(3)(4)(5)(6)(7)(8) yields n8;

� Rotations of 90 and 270 degrees around the line passing centers of faces (there are 6 of them):
(1234)(5678) and similar ones. These yield 6n2;

� Rotations of 180 degrees around the line passing centers of faces (there are 3): (13)(24)(57)(68)
and similar ones. These yield 3n4;

� Rotations around long diagonal of 120 and 240 degrees (there are 8): (1)(245)(7)(368) and
similar ones. These yield 8n4;

� Rotations of 180 degrees around the lines passing middle points of edges (there are 6):
(12)(35)(46)(78) and similar ones. These yield 6n4.

Thus there are
n8+ 17n4+6n2

24
(9)

di�erent ways to color the vertices of the cube. As this number must be an integer, 24 must divide
n8+ 17n4+6n2. �
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