
1 The Permutation Group

We see that in the application of Burnside's Lemma, the key step is to determine how many elements of X
are �xed under the action of a transformation g. So far we have to rely on our spatial imagination to do this
step. It turns out that there is a more systematic way, discovered by Polya.

1.1 The permutation group

1.1.1 De�nition and examples

Consider the problem of coloring the n faces of a certain polyhedron withm colors. Let g be a transformation
that leaves the polyhedron unmoved. We would like to determine how many ways of coloring are there that
stay unchanged under the action of g. The key observation here is that g is not just any transformation, it
must move each face to some other face, and therefore is a member of the so-called permutation group .

De�nition 1. (Permutation group) A permutation group is a group consists of permutations of the
elements of a certain set, with composition as the group operation.

Example 2. Consider all permutations of f1; 2; 3g: �1;2;3: 1! 1; 2! 2; 3! 3; �1;23: 1! 1; 2! 3; 3! 2;
�123: 1! 2; 2! 3; 3! 1; �12;3: 1! 2; 2! 1; 3! 3; �13;2: 1! 3; 2! 2; 3! 1; �132: 1! 3; 2! 1; 3! 2, together
with composition as the binary operation, that is, for example, to determine �13;2�123, we check:

�123: 1! 2; 2! 3; 3! 1; �13;2: 1! 3; 2! 2; 3! 1: (1)

Thus we have

(�13;2�123)(1)=�13;2(�123(1))=�13;2(2)=2: (2)

(�13;2�123)(2)= �13;2(�123(2))= 1: (3)

(�13;2�123)(3)= �13;2(�123(3))= 3: (4)

Consequently we have

�13;2�123: 1! 2; 2! 1; 3! 3 (5)

and therefore

�13;2�123=�12;3: (6)

We easily check that the six permutations now form a group. For example, �1;2;3 is the identity element.
(�1;23)

¡1= �1;23. We denote this group by S3.

Exercise 1. Prove that S3 is a group.

Notation 3. We denote by Sn the group of all permutations of f1;2; :::; ng, also called the symmetric group
of f1; 2; :::; ng.

De�nition 4. (Subgroup) Let G be a group. A subgroup H of G is a group with the following properties:

i. All elements of H are elements of G;
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ii. The binary operation of H is the binary operation of G.

Example 5. Recall the 5-balls-connected-by-4-rods problem. If we denote that balls from left to right (when
assembled) by 1,2,3,4,5, then H := fi; f g where

i: 1! 1; 2! 2; 3! 3; 4! 4; 5! 5; f : 1$ 5; 2$ 4; 3! 3 (7)

is a subgroup of S5.

Exercise 2. Prove this.

Example 6. The group of the 10 �cut-and-reconnect� operations for the Merry-Go-Rounds problem is a
subgroup of S10.

Exercise 3. Prove this.

Theorem 7. Let H be a subgroup of G. Then the identity element iH in H coincides with the identity element
iG in G.

Exercise 4. Prove this theorem.

Theorem 8. Let H be a subgroup of G. Then jH j divides jGj.

Proof. Let H act on G (as a set) through multiplication. Then G becomes a disjoint union of orbits. Let
g2G be arbitrary. The orbit is OrbH(g) := fh gjh2Hg. We claim that jOrbH(g)j= jH j. It su�ces to show
that h1=/ h2=)h1 g=/ h2 g. But this is obvious as hi=(hi g) g¡1, i=1; 2. �

Remark 9. Thus we see that any subgroupH of Sn satis�es that jH j divides n!. Of course this would be true
for any �nite groupH when n is large enough. So we may ask, whether every �nite group is a subgroup of Sn
for some n? Indeed this is so, thanks to Cayley's Theorem https://en.wikipedia.org/wiki/Cayley's_theorem.

1.1.2 Cauchy's two-line notation

Let � be a permutation of f1; 2; :::; ng. An e�cient notation for � is Cauchy's two-line notation:

�=

�
1 2 ��� n¡ 1 n

�(1) �(2) ��� �(n¡ 1) �(n)

�
: (8)

Example 10. Consider the 10-cart train. Let � be the operation of cutting between the 3rd and the 4th
train and then connect the front segment to the back. We can write

�=

�
1 2 3 4 5 6 7 8 9 10
8 9 10 1 2 3 4 5 6 7

�
: (9)

Example 11. Consider the regular tetrahedron and let � be the rotation of 180 degrees around the dotted
line.
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Then we can write

�=

�
1 2 3 4
3 4 1 2

�
: (10)

Exercise 5. Find all operations that leaves a regular pentagon unmoved, and write every operation in Cauchy's two-line
notation.

Exercise 6. Find all operations that leave a cube unmoved, and write every operation in Cauchy's two-line notation,
treating the cube as

a) 6 faces marked 1,2,...,6; or

b) 8 vertices marked 1,2,...,8; or

c) 12 edges marked 1,2,...,12.

1.1.3 Cycles and cyclic form

There is a special kind of permutation, called cycles, that is of particular importance to our counting theory.

De�nition 12. Let � be a permutation of f1; 2; :::; ng. � is called a cycle if there are distinct elements
a1; :::; ak2f1; 2; :::; ng such that

�(a1) = a2; �(a2)= a3; ��� �(ak¡1) = ak; �(ak) = a1 (11)

and �(a) = a for all other a2f1; 2; :::; ng. k is called the length of the cycle �.

Remark 13. For convenience, we allow k=1. Of course a cycle of length 1 would simply be the identity.

Notation 14. We denote a cycle simply as

�=(a1a2���ak): (12)

Exercise 7. Prove that (a1a2���ak)= (a2a3���aka1).

The following theorem is intuitive. We leave the proof for interested readers.

Theorem 15. Any permutation of f1; 2; :::; ng is a product of disjoint cycles.

Example 16. Consider �=
�
1 2 3 4
3 4 1 2

�
. It is a product of two cycles:

�=( 1 3 ) ( 2 4 )= ( 2 4 ) ( 1 3 ): (13)
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Remark 17. We see that, although the binary operation (composition) of permutations are in general not
commutative, that is in general �1�2=/ �2�1, the composition of disjoint cycles is commutative.

Exercise 8. Write the permutations in Exercise 5 as product of disjoint cycles.

1.2 Polya's theory

Consider coloring a device of n balls connected into some geometric shape through rods withm colors. Recall
the general procedure:

1. Get (mn) �n identical balls. Every time take n of them and mark 1; 2; :::; n. Color each such group of
n balls di�erently and assemble them into the desired geometric shape. We obtain mn devices that
are colored and marked. We call this collection X .

2. Each allowed operation turns one device into another if we ignore the colors but keep the marks.
These operations form a group G.

3. The number of di�erent devices we would have after erasing the marks is given through Burnside's
Lemma:

Ans=
1
jGj

X
g2G

jXgj (14)

where Xg is the collections of all marked devices that stays the same under the operation g, when we
ignore the color.

Both Step 2 (determine the symmetry group for a certain geometric shape) and Step 3 could be non-trivial.
There is very little we can do to Step 2, but Polya has found a formula for jXg j, thus greatly simplifying
Step 3.

Consider an arbitrary g2G. As it turns one marked device into another, and a device is determined by the
positions of the n marked balls, g is equivalent to a permutation �g of f1;2; :::; ng. Now we write �g as cycles:

�g=(a1a2���ak) ���: (15)

Now let x be a coloring of of balls 1; 2; :::; n that does not change under the action of g. We clearly see that
the balls a1; :::; ak must be colored the same. In other words, there are exactly m di�erent ways to color the
balls a1; :::; ak. Application of the same logic to other cycle factors of �g we reach the following.

Theorem 18. (Polya) Let g2G be equivalent to a permutation �g which is a product of l cycles, including
cycles of length 1, then

jXg j=ml: (16)

We will see how this is applied in the next section.
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