
Groups and Group Actions

We consider the following problem: How many ways are there to color n identical balls with m colors, if the
n balls are embedded in a geometric structure. This geometric structure allows a certain number of actions,
so that seemingly di�erent colorings can become identical after applying one of these actions.

The way we solve such problems is as follows.

1. Turn this problem into the following equivalently one.
Let there be an in�nite supply of the n-ball device with the speci�ed geometric structure. We

color them using m colors. How many di�erent colored device can we produce?

2. We color each such device as follows. Take n identical balls and mark them 1; 2; :::; n. Then color
them with the m colors and put them in a bag. Then we take another n beads, mark and color them,
and put them in another bag, and so on. As there are mn di�erent ways to color n marked balls, we
obtain mn bags of colored balls.

3. We assemble the balls in each bag into the required geometric structure. We obtainmn colored devices.

4. We erase the marks on the balls.
During this step many of the mn colored devices become identical. We put the mn colored devices

into boxes so that devices in the same box are identical, but devices in di�erent boxes are di�erent.

5. The answer now is given by the number of boxes.

Four of the above �ve steps are trivial. The key to solving the problem is to carry out Step 4 e�ciently. We
clarify the situation. At the beginning of Step 4, we have a collection of objects. There is also a prescribed
collection of actions. If performing one of the actions to one device produces another device, the two devices
should be put into the same box.

(Maybe) Surprisingly, that this step can be carried out at all puts severe restrictions on the collection of
actions. It is these restrictions that allows e�cient counting for our problem.

� Restrictions on the collection of actions

i. Any action in the collection can be �un-did�. Imagine we have two devices x1 and x2. Assume
that there is an action a such that when acting on x1, it produces x2. Thus x1; x2 should be in
the same box from the point of view of x1. However if there is no action in the collection that
can �un-do� action a, there may not be an action that can turn x2 into x1. So from the point
of view of x2, it should not be in the same box as x1. We have a problem.

Thus for every action a, there must be an �anti-action� b that can un-do a: Application of
a and then b to a device x leaves x unchanged.

ii. For any two actions, there is a third action that is equivalent to performing the two actions
in a row. Let a; b be two actions and x be a device. If we apply a to x we obtain a device y.
Thus x; y should be in the same box. Now we apply b to y to obtain another device z. Thus
y; z should be in the same box. But this means x; z must be in the same box, and there must
be another action c that would turn x into z directly.

Exercise 1. Prove that as a consequence of i and ii, the �do-nothing� action, which when acting on a device x

always leaves x unchanged, must be in the collection.

These restrictions turn the collection of actions into a mathematical object called a �group�. A group enjoys
many nice properties, among which is a theorem called the Burnside's Lemma. This theorem makes it possible
to count the number of colorings of devices e�ciently.

Groups

Definition 1. (Group) A group G is a set (again denoted by G) together with a binary operation which
take as input two elements from G and output another element of G, such that the following holds. Note that
the binary operation is usually denoted as if it is multiplication.

i. There is an identity element i. i g= g i= g for every g 2G.



ii. The binary operation is associative. (g1 g2) g3= g1 (g2 g3). This means we can simply write g1 g2 g3.

iii. For every g 2G, there is another h2G such that g h=h g= i. This h is called the �inverse� of g and
often denoted g¡1.

Example 2. Recall that when studying the coloring of 5 identical balls connected by 4 identical rods into
a straight line segment, the allowed �actions� are:

� g0: Do nothing.

� g1: Rotate the device 180 degrees.

We easily check that G= fg0; g1g together with the following binary operation

� g h is the applications of h �rst and then g,

form a group. The identity element is g0. The inverses are g0
¡1= g0, g1

¡1= g1.

Exercise 2. Let G= f¡1; 1g with multiplication as the binary operation. Is it a group?

Example 3. Recall that there are 10 allowed actions for the 10-cart Merry-Go-Rounds: Turning clockwise
by k �0 where �0=2 �/10 for k=0; 1; 2; :::; 9. We denote these 10 actions by g0; :::; g9, and take the binary
operation to be:

� gk gl=�rst turn clockwise by l �0 and then by k �0.

It can easily be checked that G= fg0; :::; g9g with this binary operation form a group.

Exercise 3. Check this.

Example 4. Let G be the set of all 2�2 matrices whose determinant is nonzero. Let matrix multiplication
be the binary operation. Then G becomes a group, usually denoted GL(2;R).1 We note that this group is
not commutative, that is g1 g2= g2 g1 may not hold.

Example 5. Let G be the actions we can apply to the following device and leave it looking the same: Three
identical balls connected by three identical rods, forming an equilateral triangle. Let the binary operation
be composition of actions, that is g1 g2 means apply g2 �rst and then apply g1.

For k=0; 1; 2, let gk := turning clockwise by 2 k �/3. Let f := �ip the device left !right.

Exercise 4. Prove that G= fg0; g1; g2; f ; g1 f ; g2 f g. (Hint:2 )

Exercise 5. Find out f g1, and check whether G is commutative.

Group action on sets

Definition 6. (Group action) Let G be a group. Let X be a set. An action of G on X is a rule assigning
some y2X to every pair g2G and x2X. This operation is usually denoted as if it is a multiplication, that
is the result of applying g to x is denoted g x. The rule must satisfy the following.

(g1 g2) x= g1 (g2x): (1)

Exercise 6. Make sense of (1).

Remark 7. We see that our coloring problem is exactly a group action situation.

Definition 8. (Orbits) Consider a group G acting on a set X. Let x2X. The orbit containing x, denoted
Orb(x), is de�ned as

Orb(x) := fg xj g 2Gg: (2)

Proposition 9. Let x=/ y. Then either Orb(x)=Orb(y), or Orb(x)\Orb(y)=?.

1. GL means �general linear�, 2 comes from 2� 2, and R means we take the matrix entries to be real numbers.
2. The key here is to prove that there are no other actions. Mark the balls 1,2,3, and notice that each action must lead to

a permutation of f1; 2; 3g.



Proof. We prove that, if Orb(y) \ Orb(x) =/ ?, then the two orbits are equal. To see this, let z 2
Orb(y)\Orb(x). Then there is g1; g22G such that z= g1 y and z= g2 x. But then y= g x where g= g1

¡1 g2.
Now take any y 0 2 Orb(y), thus y 0 = g 0 y for some g 0 2 G. But then y 0 = g 0 (g x) = (g 0 g) x 2 Orb(x).
Consequently Orb(y)�Orb(x). Now as x= g¡1 y, we see that x2Orb(y) and repeating the above argument
we have Orb(x)�Orb(y), and the two sets must be equal. �

Example 10. Consider the general situation of coloring ball-rod devices with geometric structure. The
group G consists of the actions, and the set X is the collection of the mn devices where the balls are still
marked 1; 2; ::::; n. Then for x2X, Orb(x) consists of exactly those devices that are in the same box as x.
Proposition 9 now guarantees that the collection of devices can all be boxed.

Question 11. Let G be a group acting on a set X. Is there an e�cient way counting the number of orbits?

Answer. Burnside's Lemma + Polya's theory of permutation groups.

Burnside's Lemma

Lemma 12. (Burnside's Lemma) Let G be a group acting on a set X. Then

The number of orbits=
1
jGj

X
g2G
jXg j; (3)

where jGj denotes the number of elements in G, and jXg j denotes the number of elements in jXg j, with

Xg := fx2Xj g x=xg= felements in X that remains unchanged when acted on by gg: (4)

Example 13. Consider the 5-ball-4-rods problem. We have seen that G = fi; f g where i is the identity
and f is the �ip (rotate by 180 degrees) action. We see that jGj= 2. On the other hand, X consists of all
possible colorings of 5 balls marked 1,2,3,4,5 by 2 colors.

� Every x2X is �xed by i. So jXij= 32.

� x2X is �xed by f if and only if B1 has the same color as B5, and B2 has the same color as B4. There
are 8 of them, that is jXf j=8.

By Burnside's Lemma, we have

Ans=
32+8

2
= 20: (5)

Proof. (of Burnside's Lemma) First we re-write (3) as

jGj �The number of orbits=
X
g2G
jXg j: (6)

Let's see what the two sides means.

� Left hand sides. We are assuming that every orbit has jGj elements, or equivalently, g x=/ x for every
x2X . This is clearly an over-count of the elements of X.

� Right hand side. We haveX
g2G
jXg j=

X
g2G;x2X;gx=x

1=
X
x2X

" X
g2G;gx=x

1

#
: (7)

This is also clearly an over-count of X as e x=x for all x which means each x is counted at least once.

Comparing the two sides, we see that if g x=/ x for every x2X , then both sides equals jX j. Now we check
how many times an arbitrary element in X is counted in the left hand side. Let

Gx := fg 2Gj g x=xg: (8)



We claim that every element in Orb(x) is counted exactly jGxj times, that is

jOrb(x)j jGxj= jGj; (9)

By de�nition there are exactly jGxj elements of G that satisfy g x=x. Next we notice that if g 0 x= y2Orb(x),
so does g 0 g for all g 2Gx. Therefore there are at least jGxj elements that takes x to y. On the other hand,
�x one particular g 0 with g 0x= y, then we have x=(g 0)¡1 y and for every g 00 x= y, we have (g 0)¡1 g 00 x=x
so (g 0)¡1 g 002Gx. Consequently we see that for every y 2Orb(x), jGy j= jGxj. Furthermore we have

Gy\Gx=?; [y2Orb(x)Gy=G: (10)

(9) follows.
Next we notice that X

g2G
jXg j =

X
g2G;x2X;gx=x

1

=
X
x2X

" X
g2G;gx=x

1

#
=

X
x2X

jGxj

=
X
Orbits

jOrb(x)j jGxj

=
X
Orbits

jGj

= jGj �The number of orbits: (11)

Thus ends the proof. �
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