Ordinary generating functions

DEFINITION 1. (ORDINARY GENERATING FUNCTION) Let ag, a1, ... be a sequence of numbers. The power
series A(r):=ag+ a1 @ +agx®+ - is called the “generating function” of the sequence.

NOTATION 2. It is convenient to use the shorthand ZZOZO an x™ to denote the power series ag+ a1 + .
Note that fo:o anx™ 18 just another way of writing ag+ a1 x + -+, nothing more.

Remark 3. When there are only finitely many a,,’s, the generating function of the sequence is a polynomial.
On the other hand, for practical purposes, a “power series” can be treated as a “polynomial of infinite degree.
Thus we naturally have the following rules for operations of power series.

Operations of power series
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Remark. It is crucial to understand that the index n in the power series ZZO:O an " is only a “place holder”.

It’s whole purpose is to indicate that the subscript of the coefficient and the power of x are the same, and
that the sum starts from the zeroth term. Therefore we can replace n by any other symbol:

oo o0 oo
E an ™, E A ™, E aj x® (6)
n=0 m=0 k=0

all denote the same power series
ao+ a1z +agx?+ - +a a"+ (7)
However, they are not the same as
(o] o0
Z an ™ or Z ap xF ! (8)
n=2 k=0
as the former starts from a different term, and the latter has a different relation between the subscript and

the power.

Example 4. Let A(z)=1+2?+32° and B(z)=4+z+ 223+ 2°.

a) Compute A(z)+ B(x);
b) Compute A(x) B(z).
Solution.
a) We have
Al)=1-2°40-2'+1-224+0-22+0-2* + 3. 2° (9)
and
B(z)=4-2+1-2140-22+2- 234+ 0-2* +1-2° (10)

1. This is what Newton did!



SO

A(z) + B(z) (14+4)-2°+0+1) -2t +(1+0)-22
+(0+2)-22+(0+0) -2+ (3+1)-2°
= S+a+a?+223+42°.
b) By (9,10) we have
A(@)B(z) = (I1x4)2°+(1x1+0x4)z!
+(I1x0+0x14+1x4)z2+ -
+(3x 1) 20
= 44+ +422+322+152°+ 325+ 2"+ 628+ 3210,

Example 5. Let A(z):=2+3z+42%+- and B(x):=1+3x+52%+ -
a) Write A(x), B(
b) Calculate A(z)+ B(x).
c¢) Calculate A(z) B(z).
d) Calculate A'(x).

x) into the compact form.

Solution.
a) We have . o
)= (n+2)x B(z)=)_ (2n+1)a"
b) We have " "0

A(z)+ B(x)= Z 3(n+1)a™
¢) We have the coeflicient of 2™ in A(x) B(x) to be
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Taylor expansion

In Combinatorics we usually do the Taylor expansion at 0.

f($)=f(0)+f'(O)w+@x2+--~+%w"+m

In essence, Taylor expansion is the following relation
f(z) =a power series=a polynomial of degree infinity.

The most useful Taylor expansion are

1%:1+x+x2+ L=y,
and o
. $2 ©° "
e :1+x+_+“:zﬁ'
n=0
Note that from (19) we have
1 1 ' S n— - n
(1—:6)2:(1—:6):2”5” =) (n+1)an,
n=1 n=0

and so on.

Example 6. Let A(z):=2+32+42%+ and B(x):=1+3x+52%+ . Calculate A(z) B(z).

Solution. We recall

A(ac)zz (n+2)a™, B(w)zz 2n+1)z™

Therefore =0 =0
A(z) = Z:r”—l—Z(n—l—l):r"
n=0 n=0
o 1
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and
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n=0 n=0
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The method of partial fractions

The basic idea is to write ap, where P, @ are polynomials with degree of P less than degree of @, into the

sum of functions of the type

1. Factorize Q:

It is done through the following steps.

G-

Q(s)=(s—r1)(s—r1y). (26)

2. Go through ry, ..., 7, and write down the terms of the RHS sum of
P
= Z (27)

i. If r; is a single real root, write down

according to the following rules:

A;

. 28
S—T; ( )

ii. If r; is a repeated real root, say with multiplicity m, write down
A A Aim (29)

s—r;  (s—mri)? (s —m)™

After this, discard those other copies of r; from the list 71, ..., 7, and move on to the next root.
Note that the previous “single root” case is actually contained in this case.

iii. If r;=oa+1i B is complex root with multiplicity m, then there must be another r;=a —i 8 with
the same multiplicity. Write down

Ci1s+ Diy Cim s+ Dim
) 30
Goapt s - ap o )
For example, if
Qs)=(s=1)(s =3)* (s +1) (s — 1), (31)
we have six roots (counting multiplicity) 1,3, 3,3, —i, . Now to form the RHS, we go through this list
one by one:
1: Single real root = P (32)
. e B C D
3:repeated real root with multiplicity 3 — 3 + -3 + G35 (33)
Ignore the remaining two 3’s. (34)
. . . Es+ F
—i: Complex root with multiplicity 1 — 2 (35)
Ignore the complex conjugate i. (36)
3. Determine the constants using the following procedure: We use the above example
Q(s)=(s —1)(s —3)* (s +1) (s =), (37)
which gives
P A B C D Es+F
a_s—1+s—3+(s—3)2+(3—3)3+ s2+1 (38)
leading to
P(s)=A(s=3)3(s?+1)+B(s—1)(s—3)*(s*+ 1)+ C(s—1)(s—=3) (s + 1)+ D (s — 1) (s’ + 1)+
(Es+F)(s—1)(s—3)3 (39)

i. Set s to be each of the single real roots. This would immediately give all the constants corre-
sponding to those single roots.
In our example, we see that setting s =1 immediately gives A.



ii. Set s to be the repeated real roots. This would immediately give all the constants in the last
terms of the terms corresponding to those repeated roots.
In our example, setting s =3 immediately gives D.

e At this stage, you may want to try the “differentiation method”. In our example, differ-
entiating once we obtain

P'(s) = A[2(s—=3)(s2+1)+(s—3)?(29)]

+B[(5=3)2(s?+1)+2(s—1) (s =3) (s>+ 1) +2s(s—1) (s — 3)%
+C[(s—=3)(s2+ 1)+ (s—1) (s> +1)+25(s—1) (s — 3)]
+D[s?+1+2s(s—1)]

+E[(s—1)(s=3)3 +(Es+F)[(s—3)3+3(s—1) (s —3)?. (40)

Looks very complicated, but as soon as we substitute s =3, only C and D remain. As
we have already found D, determining C' is easy.

Differentiate again and then set s =3, we obtain one equation for B, ', D. Since we
already know C, D, B is immediately determined.

iii. Set s=0.

iv. If there are still some constants need to be determined, compare the coefficient for the highest
power term s™ of the RHS. Note that as P has lower degree, we always have 0 = ---. In our
example,

Ps)=A(s =322+ 1)+ B(s—1)(s=32(2+1)+C(s—1)(s—3) (s> +1) +
D(s—1)(s>+ 1)+ (Es+F)(s—1) (s —3)>. (41)

The higher order term on the RHS is s5. Assuming
P(s)=p5s®+ - (42)

we have

ps=A+B+E. (43)
Note that this is equivalent to setting s =o0.

v. Let’s say there are k constants still need to be determined. Set s to be k arbitrary values. You
will obtain k£ equations for these k£ costants, solve them.
In our example, k=0 if we have used the “differentiation method”, k=2 if we haven’t.

Example 7. Compute the partial fraction expansion of

6s2—13s+2

s(s—1)(s—6)" (44)

Solution. First we check that the degree of the denominator is indeed higher than the degree of the

nominator. Thus we can write

6s?—13s+2 A B C
5(5—1)(8—6)_?+5—1+5—6' (43)

Summing the RHS gives

A B C  A(s—=1)(s—6)+Bs(s—=6)+Cs(s—1)
St oitiTe T s(s—1)(s—6) (46)
We need to find A, B, C such that
A(s—1)(s—6)+Bs(s—6)+Cs(s—1)=6s>—13s+2. (47)

Naively, one may want to expand the LHS into

(A+ B+C)s?+(-TA—6B—-C)s+6A (48)



and then solve

A+B+C = 6
—-7TA-6B-C —13
6A = 2.

However there is a much simpler way. The key observation is that when we set s=0, 1,6, exactly two of the
three terms vanish. In other words, when we set s=0,1, 6, exactly one unknown is left in the equation — one

equation, one unknown, linear: the simplest equation possible!

e Setting s =0, we have

A0-1)(0-6)=2=A=1/3.
e Setting s=1, we have
B(1-6)=-5=—B=1.
e Setting s=06, we have
C6(6—1)=216—78+2=140—C=14/3.

Thus the solution is

A=-, B=1, (C=-—+.

1
3
Example 8. Compute the partial fraction expansion of

5s52+34s+53
(s+3)2(s+1)°
Solution. Again, we first check that the nominator’s degree is lower.

Next we write the function into partial fractions:

552+345+53 A B c

(s+3)2(s+1) s+3 * (s+3)? + s+1
Calculating the RHS, we have

A n B n C  A(s+3)(s+1)+B(s+1)+C(s+3)?
s+3 (s+3)2 s+1 (s+3)2(s+1) ’
We need A, B, C such that

A(s+3)(s+1)+B(s+1)+C(s+3)*=5s>+345+53.

Setting s = —3, we have
B(-3+1)=45-102453=—-4=—B=2.
Setting s =—1, we have
C(—1+43)?=5-34+53=24=C=6.
To determine A, we pick s =0 to obtain

3A+B+9C=53=—=A=-1.

Example 9. Compute the partial fraction expansion of

752+235+30
(s—2)(s2+2s+5)"

Solution. Again, the degree of the nominator is lower. Check.
We write

7524+235+30 A Bs+C  A(s?+2s+5)+(Bs+0)(s—2)

(s—2)(s2+2s5+5) s—2 s24+2s+5 (s —2)(s2+2s+5)

(64)



We need to find A, B, C such that
A(s24+2s+5)+(Bs+C)(s—2)=T7s>+23 s+ 30. (65)

Setting s =2 we have

A(4+4+5)=28+46+30=104= A=8. (66)

To find B, C, we need to set s to values different from 2 and obtain equations for B, C. There is a minor trick
here that can make the equations simple. We notice that the B disappears if we set s=0. Setting s =0 we have

5A—2C=30=C=5. (67)
Finally comparing the s? terms (or setting s to yet another value) we have

A+B=7=>B=—1. (68)
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