
The problem:

How many di�erent ways are there to put n balls into m boxes?

There are three assumptions, leading to eight sub-problems:

1. The balls are di�erent or identical;

2. The cells are di�erent or identical;

3. The cells are allowed to be empty or not.

Different balls, different boxes

The boxes are allowed to be empty.
In this case we can order the balls by 1; 2; ::: and the cells by 1; 2; :::. Take ball 1. We can put it in cell 1 or
2 or 3 ... or m. In other words for each ball there are m choices of where to put it. Consequently the total
number of ways are

m�m�m� ��� �m=mn: (1)

Exercise 1. Critique the following argument.

�For each box there are n choices of balls. Thus the total is nm�.

Exercise 2. How many 5-digit binary strings are there?

Exercise 3. How many 5-digit binary numbers are there?

The boxes are not allowed to be empty.
There are three cases.

� Case 1. n<m.
In this case it is clear that the answer is 0.

� Case 2. n=m.
In this case we can line up the boxes B1, B2, B3, ..., Bn. We observe the following.

� Each way of putting the n balls into these boxes corresponds to a unique permutation of the
numbers 1; 2; :::; n. For example, when n=5, if we put ball 1 into box 4, ball 2 into box 3, ball
3 into box 5, ball 4 into box 1, and ball 5 into box 2, after we line up the boxes as B1, B2, B3,
B4, B5, the order of the balls are 45213, which is a permutation of 1, 2, 3, 4, 5.

� On the other hand, every permutation corresponds to a unique way of putting these balls into
boxes. For example, when n=5, the permutation 54123 corresponds to putting ball 5 into box
1, ball 4 into box 2, ball 1 into box 3, ball 2 into box 4, ball 3 into box 5.

Thus we see that there is a one-to-one correspondence between all the di�erent ways of putting n
di�erent balls into n di�erent boxes, and all the di�erent permutations of 1;2; :::; n. Consequently the
answer for this case is n!.

� Case 3. n>m.

Exercise 4. Critique the following argument.

The problem is equivalent to �rst listing 1; 2; :::; n in any order, then putting m¡ 1 �separators�
into the n¡ 1 spaces between the numbers, so that the balls with numbers before the �rst separator
goes into the �rst box, the balls with numbers between the �rst and the second separator goes into
the second box, and so on. Thus the answer should be

n!
�
n¡ 1
m¡ 1

�
: (2)

� Denote the answer by T (n;m).

� Consider for example m=3.



If we ignore the requirement that the boxes cannot be empty, there are 3n di�erent ways
to put the n balls into the 3 boxes.

However this is an over-count and we have to take out those �illegal� ways, which are
characterized by �at least one box is empty�.

Now if we just add the extra requirement that box 1 is empty, we obtain 2n ways. Same
for boxes 2 and 3. Thus we should subtract 3� 2n.

However 3n¡ 3� 2n is an under-count. For example, consider putting all the n balls into
box 3. This is counted once in the 2n when requiring box 1 to be empty, and is counted again
in the 2n when requiring box 2 to be empty. We should add them back. There are three cases:
boxes 1&2 are empty, 2&3 are empty, and 3&1 are empty. Thus overall we add back 3� 1n.

Finally the answer is 3n¡ 3� 2n+3� 1n.
Exercise 5. Compare with the �inclusion-exclusion principle� we discussed before. What happens to the
case �all three boxes are empty�? Why isn't the answer 3n¡ 3� 2n+3� 1n¡ 1?

� The inclusion-exclusion principle.

Theorem 1. (The Inclusion-Exclusion Principle) If A1; :::; An are n arbitrary sets, then
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� General situation.
Application of the inclusion-exclusion principle now gives
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Exercise 6. How many ways are there to put 5 di�erent balls into 4 di�erent boxes?

Identical balls, different boxes.

The boxes are allowed to be empty.
We see that this is the same as the problem of counting integer solutions to

x1+ ���+xm=n; xi> 0: (5)

Therefore the answer is �
n+m¡ 1
m¡ 1

�
: (6)

The boxes are allowed to be empty.
We see that this is the same ase the problem of counting integer solutions to

x1+ ���+xm=n; xi> 0: (7)

Therefore the answer is �
n¡ 1
m¡ 1

�
: (8)
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