MATH 421 Q1 WINTER 2017 HOMEWORK 9 SOLUTIONS

Due Apr. 6, 12pm.

Total 20 points

Question 1. (10 pts) Let the graph $G = (\{a, b, c, d, e\}, \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, a\}, \{e, a\}, \{e, b\}, \{e, c\}, \{e, d\}\}).$

- a) (5 PTS) Draw a visualization of this graph.
- b) (5 PTS) Calculate the chromatic polynomial $P_G(k)$. You should simplify your polynomial to the form $a_n k^n + a_{n-1} k^{n-1} + \dots + a_0$.

Solution.

a)

- b) We apply the deletion-contraction formula repeatedly.
 - Apply it to $\{a, b\}$ in G. We have

We see that

$$P_G(k) = P_{G_D}(k) - P_{K_4}(k) = P_{G_D}(k) - k(k-1)(k-2)(k-3).$$
(1)

• Apply it to $\{a, d\}$ in G_D . We have

Thus we have

$$P_G(k) = P_{G_{DD}}(k) - P_{G_{DC}}(k) - k (k-1) (k-2) (k-3).$$
(2)

• $P_{G_{DD}}(k)$. We apply deletion-contraction to $\{b, c\}$, and obtain

Both are simple enough now.

• $P_{G_{DDD}}(k)$. We can choose any of the k colors for e. After this, there are (k-1) choices for a, b, c and then k-2 choices for d. Therefore

$$P_{G_{DDD}}(k) = k \, (k-1)^3 \, (k-2). \tag{3}$$

• $P_{G_{DDC}}(k)$. We can choose any of the k colors for e. After this there are (k-1) choices for a and for bc, and then k-2 choices for d. Therefore

$$P_{G_{DDC}}(k) = k \, (k-1)^2 \, (k-2). \tag{4}$$

• $P_{G_{DC}}(k)$. We apply deletion-contraction to $\{e, b\}$ and obtain

We see that G_{DCD} is isomorphic to G_{DDC} , therefore

$$P_{G_{DCD}}(k) = k \, (k-1)^2 \, (k-2). \tag{5}$$

On the other hand,

$$P_{G_{DCC}}(k) = P_{K_3}(k) = k (k-1) (k-2).$$
(6)

Putting everything together we have

$$P_{G}(k) = P_{G_{D}}(k) - k(k-1)(k-2)(k-3)$$

$$= P_{G_{DD}}(k) - P_{G_{DC}}(k) - k(k-1)(k-2)(k-3)$$

$$= P_{G_{DDD}}(k) - P_{G_{DDC}}(k) - [P_{G_{DCD}}(k) - k(k-1)(k-2)] - k(k-1)(k-2)(k-3)$$

$$= k(k-1)^{3}(k-2) - 2k(k-1)^{2}(k-2) + k(k-1)(k-2) - k(k-1)(k-2)(k-3)$$

$$= k^{5} - 8k^{4} + 24k^{3} - 31k^{2} + 14k.$$
(7)

QUESTION 2. (5 PTS) Prove that $k^5 - k^3 + 2k$ cannot be a chromatic polynomial.

Proof. Assume the contrary, that is there is a graph G such that $P_G(k) = k^5 - k^3 + 2k$. This gives $P_G(1) = 2 > 0$. Consequently the graph G can be colored by one single color. But this means G does not have any edges and must be a null graph, which leads to $P_G(k) = k^n$ for some $n \in \mathbb{N}$. Contradiction.

Remark. Alternatively, $P_G(1) = 2$ means there are two ways to color the graph with one single color, which is not possible.

QUESTION 3. (5 PTS) Prove that the coefficient of k^{n-1} in $P_G(k)$ is the negative of the number of edges. You can use the fact that for any graph of order n, its chromatic polynomial is k^n + lower order terms.

Proof. We prove by induction on the number of edges m.

- Base case. When m = 0, G is the null graph and we have $P_G(k) = k^n$ where the coefficient of k^{n-1} is 0 = -m.
- Assume that for every graph with m edges, the coefficient of k^{n-1} in $P_G(k)$ is the negative of the number of edges, that is m.

Let G be a graph of n vertices and m + 1 edges. Let one of the edges be $e = \{a, b\}$. We apply deletion-contraction:

$$P_G(k) = P_{G_D}(k) - P_{G_C}(k).$$
(8)

As G_D is a graph of order n with m edges, $P_{G_D}(k) = k^n - m k^{n-1} + \cdots$. On the other hand, as G_C is a graph of order n-1, there holds $P_{G_C}(k) = k^{n-1} + \cdots$. Therefore

$$P_G(k) = k^n - (m+1)k^{n-1} + \dots$$
(9)

Thus ends the proof.