Math 348 Differential Geometry Loferta Curves and Surfaces

Lecture 20: The Gauss-Bonnet Theorem II: Gauss-Bonnet on Surfaces

Xinwei Yu

Nov. 30, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

- 1. The Full Gauss-Bonnet Theorem
- 2. Proof of Gauss-Bonnet
- 3. Gauss-Bonnet for Compact Surfaces
- 4. Looking Back and Forward

Please do not hesitate to interrupt me if you have a question.

The Full Gauss-Bonnet Theorem

Theorem

S: Surface. $C \subset S$ a simple¹ closed curve. Ω : The part of S that is enclosed by C. Then

$$\int_{\Omega} K \mathrm{d}S + \int_{\mathcal{C}} \kappa_{g} \mathrm{d}s = 2\pi.$$

• Intuition:

Total angle of turning = Forced turn + Voluntary turn.

¹Does not intersect itself.

S: unit sphere; C arbitrary circle on S centering at the north pole.

- C divides S into north region Ω_N and south region Ω_S .
- Apply Gauss-Bonnet:

$$\int_{\Omega_N} K + \int_{\mathcal{C}} \kappa_g = \int_{\Omega_S} K + \int_{\mathcal{C}} \kappa_g.$$

• Conclusion

$$\int_{\Omega_N} K = \int_{\Omega_S} K.$$

What did we do wrong?

Proof of Gauss-Bonnet

- Parametrize C by $\gamma(s) = \sigma(u(s), v(s));$
- W(s): Unit tangent vector of S that is parallel along C;
- $\theta(s)$: Angle between $\dot{\gamma}(s)$ and W(s);
- $N_S(s)$: Surface normal along C.

 $\dot{\gamma}(s) = (\cos \theta(s))W(s) + (\sin \theta(s))W(s) \times N_S(s).$

$$\ddot{\gamma}(s) = \dot{\theta}(s)[(-\sin\theta(s))W(s) + (\cos\theta(s))W(s) \times N_S(s)] + (\cos\theta(s))\dot{W}(s) + (\sin\theta(s))\dot{W}(s) \times N_S(s) + (\sin\theta(s))W(s) \times \dot{N}_S(s).$$

$$\kappa N = \kappa_n N_S + \kappa_g N_S \times T.$$

• Therefore
$$\kappa_g(s) = \dot{ heta}(s)$$
.

Consequently

$$\int_{\mathcal{C}} \kappa_{\mathsf{g}} \mathrm{d} \mathsf{s} = 2\pi - \Theta.$$

where Θ is the angle from the starting W to the ending W.

• σ : geodesic surface patch. $du^2 + \mathbb{G}dv^2$;

•
$$e_1 = \sigma_u, \ e_2 = \sigma_v / \mathbb{G}^{1/2}.$$

$$W(s) = [\cos \theta(s)]e_1 + [\sin \theta(s)]e_2.$$

- $\dot{W} \cdot [(-\sin\theta)e_1 + (\cos\theta)e_2] = 0 \Rightarrow \dot{\theta} = \dot{e}_2 \cdot e_1;$
- C' : (u(s), v(s)), enclosing Ω' . By Green's Theorem,

$$\int_{\mathcal{C}} \dot{e}_2 \cdot e_1 = \int_{\Omega'} [e_{1,u} \cdot e_{2,v} - e_{1,v} \cdot e_{2,u}] \mathrm{d}u \mathrm{d}v.$$

 $\int K = \Theta$, cont.

$$\Theta = \int \dot{\theta} = \int_{\Omega'} [e_{1,u} \cdot e_{2,v} - e_{1,v} \cdot e_{2,u}] \mathrm{d}u \mathrm{d}v.$$

• Substitute $e_1 = \sigma_u, e_2 = \sigma_v/\mathbb{G}^{1/2}$, integrand becomes

$$\sigma_{uu} \cdot \frac{\sigma_{vv}}{\mathbb{G}^{1/2}} - \frac{1}{2} \frac{(\sigma_{uu} \cdot \sigma_v) \mathbb{G}_v}{\mathbb{G}^{3/2}} - \frac{\sigma_{uv} \cdot \sigma_{uv}}{\mathbb{G}^{1/2}} + \frac{1}{2} \frac{(\sigma_{uv} \cdot \sigma_v) \mathbb{G}_u}{\mathbb{G}^{3/2}}.$$

• $\mathbb{E} = 1, \mathbb{F} = 0 \Rightarrow$

$$\Gamma_{11}^{1} = \Gamma_{11}^{2} = \Gamma_{12}^{1} = 0, \\ \Gamma_{12}^{2} = \frac{\mathbb{G}_{u}}{2\mathbb{G}}, \\ \Gamma_{22}^{1} = -\frac{\mathbb{G}_{u}}{2}, \\ \Gamma_{22}^{2} = \frac{\mathbb{G}_{v}}{2\mathbb{G}}.$$

• Calculate

$$\int_{\Omega'} [e_{1,u} \cdot e_{2,v} - e_{1,v} \cdot e_{2,u}] \mathrm{d} u \mathrm{d} v = \int_{\Omega'} K \sqrt{\mathbb{E} \mathbb{G} - \mathbb{F}^2} \mathrm{d} u \mathrm{d} v = \int_{\Omega} K \mathrm{d} v$$

Gauss-Bonnet for Compact Surfaces

S: Compact surface. Then $\int_{S} K = 2\pi \chi$.

- $\int_{S} K$ has to be defined;
- χ : Euler number.

$$\chi = V - E + F.$$

The Euler number

$$\chi = V - E + F.$$

• "Look like a sphere": $\chi = 2$.

- 1. Take away one face. "Flatten". F becomes F 1.
- 2. Take away or "merge" edges. V E + F unchanged.
- 3. Until we have a polygon.
- "Look like a donut": $\chi = 0$.
- "Look like a 8": $\chi = -2$.
- Do you see the pattern?

Proof

$$\int_{\mathcal{S}} \mathcal{K} = 2\pi \chi.$$

- 1. S becomes a polyhedron through triangularization. With V, E, F.
- 2. Apply Gauss-Bonnet to each T_i , $i = 1, 2, \ldots, F$.
- 3. Sum up $\sum_{i=1}^{F}$. $\int_{\cup T_i} K + \sum \int_{edges} \kappa_g + \sum \text{ exterior angles} = 2F\pi.$

4. Counting.

$$\sum \text{ exterior angles} - 2F\pi = \sum_{i=1}^{V} (E_i - 2)\pi - 2F\pi = -2\pi\chi.$$

Looking Back and Forward

Summary

Required: §13.1; Optional: §13.2–13.8

1. The Gauss-Bonnet Theorem:

Theorem

S: Surface. $C \subset S$ a simple closed curve. Ω : The part of S that is enclosed by C. Then

$$\int_{\Omega} \mathbf{K} \mathrm{d}\mathbf{S} + \int_{\mathcal{C}} \kappa_{\mathbf{g}} \mathrm{d}\mathbf{s} = 2\pi.$$

- 2. Gauss-Bonnet for curvilinear polygons.
- 3. Gauss-Bonnet for compact surfaces.

Review for final

Please let me know things you want me to cover/solve/discuss.