
Lectures 20: The Gauss-Bonnet Theorem II

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we introduce the Gauss-Bonnet theorem. The required
section is �13.1. The optional sections are �13.2��13.8.

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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1. A mechanical point of view
The role of surface curvature can be understood through the following mechanical analogy.

� Curvature = centrifugal force.
Consider a particle moving along a plane curve C with unit speed. Then the

position of this particle gives the arc length parametrization of 
(s). Then the velocity
and acceleration are

v(s)= 
_(s); a(s)= 
�(s): (1)

If we denote ns(s) := [
_(s)]?, there holds

a(s)= �s(s)ns(s): (2)

Thus we see that �s(s) is the �signed� magnitude of force. Consequently

2�=

Z
C
�s(s) ds= �signed total� of work done. (3)

� Surface curvature = �Gravity� = �extra� centrifugal force.
Now consider a particle moving along a surface curve. Then part of the the cen-

trifugal force is provided by �gravity��the force that keeps the particle on the surface.
Thus we conjecture that

2�= �signed total� of work by gravity+�signed total� of work by other forces: (4)

Recall that on a surface, the trajectory of a particle moving under gravity only satis�es
�g=0 where �g is the geodesic curvature. On the other hand, the total work done by
gravity should be related to the �total mass� enclosed by the curve. Thus we reach

2�=

Z



curvature dS+
Z
C
�g(s) ds (5)

where 
 is the part of the surface enclosed by C.

� Geodesic curvature = other forces.

Exercise 1. Let S be a developable surface. Let C be a curve on S. Let C~ be the curve on the
plane that is the ��attened� S. Prove that for any p2S with p~ the corresponding point on the
plane, there holds �g(p)=�s(p~).

Remark 1. There are other physical explanations for Gauss-Bonnet, for example see here. A
more detailed version can be found in A �bicycle wheel� proof of the Gauss-Bonnet theorem,
Mark Levi, Expo. Math. 12 (1994), 145�164.

1.1. Gauss-Bonnet on surfaces

Theorem 2. Let S be a surface and C �S be a simple closed curve. Let 
 be the part of S
that is enclosed by C. There holdsZ




K dS+

Z
C
�g ds=2�: (6)
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Exercise 2. Let S be the unit sphere. Let C � S be an arbitrary simple closed curve. Then C divides
S into two regions 
N ;
S. By Theorem 2 we haveZ


N

K dS+

Z
C
�g ds=2�=

Z

S

K dS+

Z
C
�g ds=)

Z

N

K dS=

Z

S

K dS (7)

which means area(
N) = area(
S). This is absurd. Did we make a mistake?

Proof. We divide the proof of Theorem 2 into several steps.

i. Set-up. We parametrize C as 
(s)=�(u(s); v(s)) where s is the arc length parameter.
Let the range of s be from 0 to L. Denote by W (s) a parallel tangent unit vector
�eld along C. Let �(s) be the angle between 
_(s) and W (s).

Let NS(s) be the unit normal of S. Then we see that W (s);NS(s);W (s)�NS(s)
form a right-handed orthonormal frame, and consequently


_(s)= (cos �(s))W (s)+ (sin �(s))W (s)�NS(s): (8)

ii. The role of �g . Taking derivative of (8) we have


�(s) = �_(s) [(¡sin �(s))W (s)+ (cos �(s) )W (s)�NS(s)]

+(cos �(s))W_ (s)+ (sin �(s))W_ (s)�NS(s)

+(sin �(s))W (s)�N_S(s): (9)

As W (s) is parallel along C, we see that the black terms are tangent to TpS, the grey
term is zero, and the green terms are parallel to NS(s). Recalling the de�nition of
the normal and geodesic curvatures, we see that

�g(s)= �_(s): (10)

Consequently, we have Z
C
�g ds=2�¡� (11)

where � is the angle between W (0) and W (L).

iii. The role of K . Due to the presence of the surface curvature, we do not always have
W (0)=W (L), that is �=0, in (11).

We take �(u; v) to be a geodesic surface patch, with �rst fundamental form
du2+G(u; v) dv2. Let e1 := �u; e2 :=

�v

G1/2
. Then we have

W (s)= [cos �(s)] e1+ [sin �(s)] e2: (12)

This leads to

W_ (s)= �_(s) [(¡sin �) e1+(cos �) e2] + (cos �) e1_ + (sin �) e2_ : (13)

As W is parallel along 
 and is of unit length, we have W_ ?[(¡sin �) e1+ (cos �) e2].
Thus

0 = W_ (s) � [(¡sin �) e1+(cos �) e2]
= �_(s)+ [(cos �)2 e1_ � e2¡ (sin �)2 e2_ � e1]
= �_(s)¡ e2_ � e1: (14)
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Note that we have used e_1 � e2=¡e2_ � e1.
Now we have, setting C 0 to be the closed plane curve (u(s); v(s)) and 
0 the region

enclosed by C 0, by Green's Theorem,Z
0

L

e1 � e2_ =

Z
0

L

(e1 � e2;u)u_ + (e1 � e2;v) v_

=

Z
C 0
(e1 � e2;u) du+(e1 � e2;v) dv

=

Z

0
[e1;u � e2;v ¡ e1;v � e2;u] du dv: (15)

Substituting e1 := �u; e2 :=
�v

G1/2
into the above, we have the integrand to be

�uu �
�vv

G1/2
¡ 1
2
(�uu ��v)Gv

G3/2
¡ �uv ��uv

G1/2
+
1
2
(�uv ��v)Gu

G3/2
: (16)

As E=1;F=0; we have

¡11
1 =¡11

2 =¡12
1 =0;¡12

2 =
Gu

2G
;¡22

1 =¡Gu

2
;¡22

2 =
Gv

2G
: (17)

Consequently

�uu ��vv=LN; �uu � �v=0; (18)

�uv ��uv=
1
4
Gu
2

G2
+M2; �uv ��v=

Gu

2G
: (19)

We see that

e1;u � e2;v ¡ e1;v � e2;u=
LN¡M2

G1/2
=K EG¡F2

p
: (20)

Therefore Z

0
[e1;u � e2;v ¡ e1;v � e2;u] du dv=

Z



K dS (21)

and the proof ends. �

Remark 3. The proof of Theorem 2 here is not fully rigorous (can you spot the gaps?). Yet
it is intuitive and consistent with our proof in the plane case.

Exercise 3. Read through the proof in �13.1 of the textbook and understand every detail.

Remark 4. By (6) it is easy to see that if C is a closed geodesic, then necessarily
R


K dS=

2�. Consequently there is no closed geodesic on a surface with K 6 0 everywhere.

Exercise 4. Let S be a cylinder. Then clearly there are closed geodesics. Can you explain this?

Theorem 5. (Curvilinear polygons on a surface) For a curvilinear polygon on a
surface S, we have

2�=

Z
C
�g ds+

X
�i+

Z



K dS (22)

where �i are the exterior angles at the vertices.1
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2. Gauss-Bonnet on compact surfaces

2.1. Integration on compact surfaces

� Recall that we can integrate on a surface patch throughZ
S

f dS=

Z
U

f(�(u; v)) k�u��vkdu dv: (23)

What if the surface cannot be covered by one single surface patch? In particular, how
do we integrate on a compact surface S?

Exercise 5. Show that a compact surface cannot be covered by one single surface patch.

� The idea is �partition of unity�. Assume that S is covered by N surface patches �1; :::;
�N, where �i:Ui 7!S with 
i= �(Ui). Note that each 
i is open and [i=1N 
i=S.

For every 
i, let 
~ i := 
i ¡ [j=/ i
j. Then 
~ i is closed. Let �
¡
U~i
�
= 
~ i. We

see that "i := dist
¡
U~i; @Ui

�
/3 > 0.2 We de�ne Wi :=

�
x 2 Uij dist

¡
x; U~i

�
6 "i

	
and

W~i :=
�
x2Uijdist

¡
x; U~i

�
6 2 "i

	
.

Next take a smooth even function �> 0 such that

2�

Z
0

1
�(t) t dt=1; �(t)=

�
1 jtj< 1/4
0 jtj> 3/4

: (24)

We see that the function �(u; v) := �
¡

u2+ v2
p �

satis�esZ
R2

�(u; v) du dv=2�

Z
0

1
�(r) r dr=1 (25)

and �(u; v)=

(
1 u2+ v2
p

< 1/4

0 u2+ v2
p

> 3/4
. Now de�ne

�i(u; v) :=
1

"i
2 �

�
u
"i
;
v
"i

�
: (26)

Let the function �i(u; v) :=

�
1 (u; v)2Wi

0 (u; v)2/Wi
. De�ne

�i(u; v) :=

Z
R2

�i(u¡u0; v¡ v 0) �i(u0; v 0) du0dv 0: (27)

Then �i(u; v) is smooth and satisfy

�i(u; v)=

8><>:
1 (u; v)2U~i
>0 (u; v)2W~i
=0 (u; v) outside W~i

: (28)

1. Note that our �i here are di�erent from those in �13.2 of the textbook.

2. If Ui=R2 just set "i=1.
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Finally de�ne 	i=
�i ��i

¡1P
j=1
N �j � �j

¡1 . We see that

X
i=1

N

	i=1 all over S: (29)

Such f	ig is called a �partition of unity� of S.

� With such �partition of unity� available, we can simply de�neZ
S

f dS :=
X
i=1

N Z
Ui

Fi(�i(u; v)) k�i;u��i;vkdu dv (30)

where

Fi= f 	i: (31)

2.2. Euler number

Definition 6. Let P be a polyhedron. De�ne the Euler number � as

�=V ¡E+F (32)

where V is the number of vertices, E the number of edges, and F the number of faces.

Remark 7. It turns out that � is a �topological invariant�. It is easy to convince ourselves
that deforming a polyhedron would not change �. Thus � depends only on the �shape� of
the polygon. A few examples.

� If we can �blow up� the polygon into a sphere, then �=2. In other words, �(sphere)=
2.

To see this, we do the following operations.

i. Take away one face and ��atten� the the �polytope with a hole�. Thus F 7!
F ¡ 1 and E; V remain the same.

ii. Let e be any edge that is not on the boundary. There are two situations.

a) Both ends of e have more than two edges connected to the vertices.
In this case we take e away. then the two adjacent faces are merged
together. Thus after this operation we have E 7!E¡1 and F 7!F ¡1,
while V remains the same.

b) One or both ends of e is connected to one other edge. Then we merge
this edge with e. When there is only one such end, the result is E 7!
E ¡ 1; V 7! V ¡ 1, when there are two such ends, we have E 7!E ¡ 2,
V 7!V ¡ 2.

Note that in either case, V ¡E+F stays unchanged.

iii. Keep doing step ii until there is no interior edge anymore. Then we would have
a polygon, for which V =E;F =1. Thus the original � should be 1+1=2.
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� �(torus)= 0.
The key di�erence here is that we still cannot �atten the �polytope with a hole�

after �taking one face away�. Intuitively, if we �cut� the torus and �straighten� it into
a cylinder, then V ¡ E stays the same while F 7! F + 2. But a cylinder (of �nite
height) is topologically equivalent to the sphere so

V +F +2¡E=2=) �=V ¡E+F =0 (33)

for the torus.

� �(two torus connected together)=¡2.

2.3. Gauss-Bonnet on compact surfaces

Theorem 8. 3Let S be a compact surface. ThenZ
S

K dS=2��: (34)

Remark 9. If S is an apple, then the total Gaussian curvature is 2 �. Now take a pen to
poke it. During the process the total Gaussian curvature stays 2 �. But the moment you
poke it through, it becomes 0.

Exercise 6. Explain how does all the Gaussian curvature �disappear� at the moment we �poke through�
the apple.

Proof. We sketch the idea. Intuitively, we can divide S into �nitely many triangles T1; :::;
TF and thus S becomes a �curvilinear polyhedron� with F faces. We note that as each face
has three edges and each edge is shared by two faces, there holds E=

3F

2
. On each triangle

we apply Theorem 5:Z
Ti

K dS+

Z
ei1[ei2[ei3

�g ds+�i1+�i2+�i3=2� (35)

where ei1; ei2; ei3 are the three edges and �i1; �i2; �i3 are the three exterior angles. Now
summing over i=1; 2; :::; F we see that4X

i

Z
Ti

K dS=

Z
S

K dS;
X
i

Z
ei1[ei2[ei3

�g ds=0: (36)

Now we sum up the exterior angles through a di�erent way of counting. Let A1; :::; AV be
the vertices. Denote by Ei the number of edges connected to each Ai. Then we see that,

sum of exterior angles at Ai=Ei �¡
X

interior angles at Ai=(Ei¡ 2)�: (37)

3. Theorem 13.4.5 of the textbook.

4. Intuitively, we can simply take the edges to be geodesics, then �g=0 and the edge terms vanish.
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Therefore (note that each edge connects two vertices)X
all exterior angles¡2F� =

X
i=1

V

(Ei¡ 2) �¡ 2F�

=

 X
i=1

V

Ei

!
�¡ 2V�¡ 2F�

= 2E�¡ 2V�¡ 2F�
= 2� (E ¡ V ¡F )=¡2 ��: (38)

The conclusion then follows. �

Remark 10. We see that the Gaussian curvature is invariant under local isometries, but
the integral of the Gaussian curvature over a compact surface is even more invariant�it only
depends on the �shape� of the surface.
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