Math 348 Differential Geometry Loter A

Lecture 19: The Gauss-Bonnet Theorem I:

Gauss-Bonnet in the Plane

Xinwei Yu

Nov. 28, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

Table of contents

- 1. The Gauss-Bonnet Theorem
- 2. Proof of Gauss-Bonnet in the Plane
- 3. Looking Back and Forward

Please do not hesitate to interrupt me if you have a question.

The Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem

Theorem

S: Surface. $C \subset S$ a simple¹ closed curve. Ω : The part of S that is enclosed by C. Then

$$\int_{\Omega} K \mathrm{d}S + \int_{\mathcal{C}} \kappa_{\mathbf{g}} \mathrm{d}s = 2\pi.$$

• Intuition:

Total angle of turning = Forced turn + Voluntary turn.

• Generalizing "sum of interior angles of a triangle is π ".

¹Does not intersect itself.

Proof of Gauss-Bonnet in the Plane

Gauss-Bonnet for Convex Polygons

Sum of exterior angles of a convex polygon is 2π .

- Definition of "exterior angles";
- Proof.
 - "Move" all angles to the center; Or,
 - Calculate interior angles.

Gauss-Bonnet for General Polygons

Sum of signed exterior angles of a general polygon is 2π .

- Definition of "signed" exterior angle.
- Proof. By induction.
 - 1. Base (n = 2, 3) is trivial;
 - 2. Induction step.

Gauss-Bonnet for Smooth Curves

$$\mathcal{C}$$
: Simple closed curve. $\int_{\mathcal{C}} \kappa_s(s) ds = 2\pi$.

- What if not simple?
- Recall "signed curvature".
- Proof.
 - 1. $\kappa_s(s) = \dot{\theta}(s)$;
 - 2. $\int_{\mathcal{C}} \kappa_s(s) ds = 2k\pi$ for some integer k.
 - 3. Approximate by polygon to prove k = 1.

Gauss-Bonnet for Curvilinear Polygons

$$\int_{\mathcal{C}} \kappa_{\mathbf{s}} \mathrm{d}\mathbf{s} + \sum \alpha_{i} = 2\pi.$$

- α_i : signed exterior angle;
- Relation between curvature and angle;
- **Proof.** Adapt proof for smooth curves.

Looking Back and Forward

Summary

Required: $\S13.1$; Optional: $\S13.2-13.8$

1. The Gauss-Bonnet Theorem:

Theorem

S: Surface. $C \subset S$ a simple closed curve. Ω : The part of S that is enclosed by C. Then

$$\int_{\Omega} K \mathrm{d}S + \int_{\mathcal{C}} \kappa_g \mathrm{d}s = 2\pi.$$

7

See you Thursday!

The Gauss-Bonnet Theorem

- Proof of the Gauss-Bonnet Theorem;
- Relation to the shape of closed surfaces.