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Please do not hesitate to interrupt me if you have a question.
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Review



Parallel Transport

Covariant derivative: ∇γw = ẇ − (ẇ · NS)NS

• Parallel transport. w : A tangent vector field defined

along a curve γ(t).

• w is parallel along γ: ∇γw = 0;

• w = ασu + βσv then w is parallel along γ ⇔

α̇ + (Γ1
11u̇ + Γ1

12v̇)α + (Γ1
12u̇ + Γ1

22v̇)β = 0 (1)

β̇ + (Γ2
11u̇ + Γ2

12v̇)α + (Γ2
12u̇ + Γ2

22v̇)β = 0. (2)

• Christoffel symbols.

σuu = Γ1
11σu + Γ2

11σv + LN (3)

σuv = Γ1
12σu + Γ2

12σv + MN (4)

σvv = Γ1
22σu + Γ2

22σv + NN (5)
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Calculation of Γk
ij : An Example

σ(u, v) = (cos u cos v , cos u sin v , sin u)

1. Preparation. Calculate

σu, σv ,N , σuu, σuv , σvv .

2. Solve for Γk
11.

σuu = Γ1
11σu + Γ2

11σv + LN

3. Solve for Γk
12.

σuv = Γ1
12σu + Γ2

12σv + MN

4. Solve for Γk
22.

σvv = Γ1
22σu + Γ2

22σv + NN .
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Geodesics



”Straight” lines on a surface

Meaning of ”straight”?

1. κ = |κn| along the curve;

2. κg = 0 along the curve;

3. ∇γT = 0 along the curve.

4. Shortest path connecting two points.

All four characterizations roughly equivalent.

Definition. γ(t) is a geodesic: ∇γ γ̇ = 0

• γ is a geodesic ⇒ ‖γ̇‖ is constant.
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Geodesic equations

γ(t) = σ(u(t), v(t)).

If ‖γ̇‖ is constant, then γ is a geodesic ⇔

d

dt
(Eu̇ + Fv̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ + Gu v̇
2), (6)

d

dt
(Fu̇ + Gv̇) =

1

2
(Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2). (7)

• Called geodesic equations.

• Consequence of κ = |κn|.
• Among the three equations: two geodesic equations and

d
dt
‖γ̇‖ = 0, any two imply the third.
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Alternative formulations

∇γ γ̇ = 0⇔ parallel transport equation

α̇ + (Γ1
11u̇ + Γ1

12v̇)α + (Γ1
12u̇ + Γ1

22v̇)β = 0 (8)

β̇ + (Γ2
11u̇ + Γ2

12v̇)α + (Γ2
12u̇ + Γ2

22v̇)β = 0. (9)

where α = u̇, β = v̇ , thanks to γ̇ = u̇σu + v̇σv ,

ü + Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0 (10)

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0. (11)

• The geodesic equations are easier to remember in matrix

form.

‖γ̇‖ does not need to be constant in the parallel transport

equations. What has changed here?
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Application to Surfaces of

Revolution



Clairaut’s Theorem

σ(u, v) = (f (u) cos v , f (u) sin v , u).

1. Geodesic equations.

d

ds
((1 + f ′(u)2)u̇) = f ′(u)f ′′(u)u̇2 + f (u)f ′(u)v̇ 2,

d

ds
(f (u)2v̇) = 0.

2. Assume (1 + f ′(u)2)u̇2 + f (u)2v̇ 2 = ‖γ̇‖2 = 1. Then

cos∠(σu, γ̇) =
√

1 + f ′(u)2u̇.

3. Consequently,

f (u) sin∠(σu, γ̇) = Constant.

4. Clairaut’s Theorem: Geodesic ⇔ f (u) sin∠(σu, γ̇) = C .
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Geodesics in the unit sphere

As surface of revolution: (
√

1− u2 cos v ,
√

1− u2 sin v , u)

1. (2nd )Geodesic equation

(1− u2)v̇ = f (u)2v̇ = c0;

2. Constant speed (assume arc length parametrization)

1 = f ′(u)2u̇2 + f (u)2v̇ 2 + u̇2 ⇒ 1− c20 = u2 + u̇2.

3. Calculate

γ × γ̇ =

(
u̇ sin v − c0u cos v√

1− u2
,
u̇ cos v + c0u sin v√

1− u2
, c0

)
4. 1− c20 = u2 + u̇2 ⇒ (ü + u)u̇ = 0⇒ d

ds
(γ × γ̇) = 0.

5. γ lies in a plane passing the origin ⇒ big circle.
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Looking Back and Forward



Summary

• Definitions.

1. Geodesics. ∇γ γ̇ = 0.

• Properties.

1. Geodesics must have constant speed.

• Equations.

1. Geodesic equations.

d

dt
(Eu̇ + Fv̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ + Gu v̇
2), (12)

d

dt
(Fu̇ + Gv̇) =

1

2
(Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2). (13)

2. Alternative formulation of Geodesic equations.

ü + Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0 (14)

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0. (15)

9



See you next Tuesday!

Review for Midterm II.

• Covers material after the first midterm;

• Similar format as Midterm I.
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