Math 348 Differential Geometry of Curves and Surfaces

Lecture 16 Geodesics

Xinwei Yu

Nov. 2, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

Table of contents

- 1. Review
- 2. Geodesics
- 3. Application to Surfaces of Revolution
- 4. Looking Back and Forward

Please do not hesitate to interrupt me if you have a question.

Review

Covariant derivative:
$$abla_{\gamma} w = \dot{w} - (\dot{w} \cdot N_S) N_S$$

- Parallel transport. w: A tangent vector field defined along a curve γ(t).
 - w is parallel along γ : $\nabla_{\gamma} w = 0$;

•
$$w = \alpha \sigma_u + \beta \sigma_v$$
 then w is parallel along $\gamma \Leftrightarrow$

$$\dot{\alpha} + (\Gamma_{11}^{1}\dot{u} + \Gamma_{12}^{1}\dot{v})\alpha + (\Gamma_{12}^{1}\dot{u} + \Gamma_{22}^{1}\dot{v})\beta = 0 \quad (1)$$
$$\dot{\beta} + (\Gamma_{11}^{2}\dot{u} + \Gamma_{12}^{2}\dot{v})\alpha + (\Gamma_{12}^{2}\dot{u} + \Gamma_{22}^{2}\dot{v})\beta = 0. \quad (2)$$

• Christoffel symbols.

$$\sigma_{uu} = \Gamma_{11}^1 \sigma_u + \Gamma_{11}^2 \sigma_v + \mathbb{L}N \tag{3}$$

$$\sigma_{uv} = \Gamma_{12}^1 \sigma_u + \Gamma_{12}^2 \sigma_v + \mathbb{M}N \tag{4}$$

$$\sigma_{vv} = \Gamma^1_{22}\sigma_u + \Gamma^2_{22}\sigma_v + \mathbb{N}N$$
(5)

Calculation of Γ_{ij}^k : An Example

$$\sigma(u, v) = (\cos u \cos v, \cos u \sin v, \sin u)$$

1. Preparation. Calculate

$$\sigma_u, \sigma_v, N, \sigma_{uu}, \sigma_{uv}, \sigma_{vv}.$$

2. Solve for Γ_{11}^k .

$$\sigma_{uu} = \Gamma_{11}^1 \sigma_u + \Gamma_{11}^2 \sigma_v + \mathbb{L}N$$

3. Solve for Γ_{12}^k .

$$\sigma_{uv} = \Gamma_{12}^1 \sigma_u + \Gamma_{12}^2 \sigma_v + \mathbb{M}N$$

4. Solve for Γ_{22}^k .

$$\sigma_{vv} = \Gamma_{22}^1 \sigma_u + \Gamma_{22}^2 \sigma_v + \mathbb{N}N.$$

Geodesics

Meaning of "straight"?

- 1. $\kappa = |\kappa_n|$ along the curve;
- 2. $\kappa_g = 0$ along the curve;
- 3. $\nabla_{\gamma} T = 0$ along the curve.
- 4. Shortest path connecting two points.

All four characterizations roughly equivalent.

Definition. $\gamma(t)$ is a geodesic: $abla_{\gamma}\dot{\gamma} = 0$

•
$$\gamma$$
 is a geodesic $\Rightarrow \|\dot{\gamma}\|$ is constant.

Geodesic equations

$$\gamma(t) = \sigma(u(t), v(t)).$$

If $\|\dot{\gamma}\|$ is constant, then γ is a geodesic \Leftrightarrow

$$\frac{\mathrm{d}}{\mathrm{d}t} (\mathbb{E}\dot{u} + \mathbb{F}\dot{v}) = \frac{1}{2} (\mathbb{E}_{u}\dot{u}^{2} + 2\mathbb{F}_{u}\dot{u}\dot{v} + \mathbb{G}_{u}\dot{v}^{2}), \qquad (6)$$
$$\frac{\mathrm{d}}{\mathrm{d}t} (\mathbb{F}\dot{u} + \mathbb{G}\dot{v}) = \frac{1}{2} (\mathbb{E}_{v}\dot{u}^{2} + 2\mathbb{F}_{v}\dot{u}\dot{v} + \mathbb{G}_{v}\dot{v}^{2}). \qquad (7)$$

- Called geodesic equations.
- Consequence of $\kappa = |\kappa_n|$.
- Among the three equations: two geodesic equations and $\frac{d}{dt} \|\dot{\gamma}\| = 0$, any two imply the third.

Alternative formulations

$$\nabla_{\gamma} \dot{\gamma} = 0 \Leftrightarrow \text{ parallel transport equation}$$

$$\dot{\alpha} + (\Gamma_{11}^{1} \dot{u} + \Gamma_{12}^{1} \dot{v}) \alpha + (\Gamma_{12}^{1} \dot{u} + \Gamma_{22}^{1} \dot{v}) \beta = 0 \quad (8)$$

$$\dot{\beta} + (\Gamma_{11}^{2} \dot{u} + \Gamma_{12}^{2} \dot{v}) \alpha + (\Gamma_{12}^{2} \dot{u} + \Gamma_{22}^{2} \dot{v}) \beta = 0. \quad (9)$$

where $\alpha = \dot{u}, \beta = \dot{v}$, thanks to $\dot{\gamma} = \dot{u}\sigma_{u} + \dot{v}\sigma_{v},$

$$\ddot{u} + \Gamma_{11}^{1} \dot{u}^{2} + 2\Gamma_{12}^{1} \dot{u}\dot{v} + \Gamma_{22}^{1} \dot{v}^{2} = 0 \quad (10)$$

$$\ddot{v} + \Gamma_{21}^{2} \dot{u}^{2} + 2\Gamma_{12}^{2} \dot{u}\dot{v} + \Gamma_{22}^{2} \dot{v}^{2} = 0. \quad (11)$$

• The geodesic equations are easier to remember in matrix form.

 $\|\dot{\gamma}\|$ does not need to be constant in the parallel transport equations. What has changed here?

Application to Surfaces of Revolution

Clairaut's Theorem

$$\sigma(u, v) = (f(u) \cos v, f(u) \sin v, u).$$

1. Geodesic equations.

$$\frac{\mathrm{d}}{\mathrm{d}s}((1+f'(u)^2)\dot{u}) = f'(u)f''(u)\dot{u}^2 + f(u)f'(u)\dot{v}^2,$$
$$\frac{\mathrm{d}}{\mathrm{d}s}(f(u)^2\dot{v}) = 0.$$

- 2. Assume $(1 + f'(u)^2)\dot{u}^2 + f(u)^2\dot{v}^2 = \|\dot{\gamma}\|^2 = 1$. Then $\cos \angle (\sigma_u, \dot{\gamma}) = \sqrt{1 + f'(u)^2}\dot{u}.$
- 3. Consequently,

$$f(u)\sin \angle (\sigma_u, \dot{\gamma}) = Constant.$$

4. Clairaut's Theorem: Geodesic $\Leftrightarrow f(u) \sin \angle (\sigma_u, \dot{\gamma}) = C$.

Geodesics in the unit sphere

As surface of revolution:
$$(\sqrt{1-u^2}\cos v, \sqrt{1-u^2}\sin v, u)$$

1. (2nd)Geodesic equation

$$(1-u^2)\dot{v} = f(u)^2\dot{v} = c_0;$$

2. Constant speed (assume arc length parametrization)

$$1 = f'(u)^2 \dot{u}^2 + f(u)^2 \dot{v}^2 + \dot{u}^2 \Rightarrow 1 - c_0^2 = u^2 + \dot{u}^2.$$

3. Calculate

4

$$\gamma \times \dot{\gamma} = \left(\frac{\dot{u}\sin v - c_0 u\cos v}{\sqrt{1 - u^2}}, \frac{\dot{u}\cos v + c_0 u\sin v}{\sqrt{1 - u^2}}, c_0\right)$$

4. $1 - c_0^2 = u^2 + \dot{u}^2 \Rightarrow (\ddot{u} + u)\dot{u} = 0 \Rightarrow \frac{d}{ds}(\gamma \times \dot{\gamma}) = 0.$
5. γ lies in a plane passing the origin \Rightarrow big circle.

Looking Back and Forward

Summary

• Definitions.

- 1. Geodesics. $\nabla_{\gamma}\dot{\gamma} = 0.$
- Properties.
 - 1. Geodesics must have constant speed.
- Equations.
 - 1. Geodesic equations.

$$\frac{\mathrm{d}}{\mathrm{d}t} (\mathbb{E}\dot{u} + \mathbb{F}\dot{v}) = \frac{1}{2} (\mathbb{E}_{u}\dot{u}^{2} + 2\mathbb{F}_{u}\dot{u}\dot{v} + \mathbb{G}_{u}\dot{v}^{2}), (12)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (\mathbb{F}\dot{u} + \mathbb{G}\dot{v}) = \frac{1}{2} (\mathbb{E}_{v}\dot{u}^{2} + 2\mathbb{F}_{v}\dot{u}\dot{v} + \mathbb{G}_{v}\dot{v}^{2}). (13)$$

2. Alternative formulation of Geodesic equations.

$$\ddot{u} + \Gamma_{11}^1 \dot{u}^2 + 2\Gamma_{12}^1 \dot{u} \dot{v} + \Gamma_{22}^1 \dot{v}^2 = 0 \qquad (14)$$

$$\ddot{v} + \Gamma_{11}^2 \dot{u}^2 + 2\Gamma_{12}^2 \dot{u}\dot{v} + \Gamma_{22}^2 \dot{v}^2 = 0.$$
 (15)

Review for Midterm II.

- Covers material after the first midterm;
- Similar format as Midterm I.