Math 348 Fall 2017

LECTURES 16: GEODESICS

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we study geodesics, a special kind of curve on a surface,
characterized by unit tangent vectors being parallel along the curve.
The required textbook sections are §7.4, §9.1-9.4. The optional sections

are §9.5
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1. An example for calculation of I‘fj.

We first give one more example on how to calculate Ffj.

Example 1. Let S be the unit sphere (cosucosv,cosusinv,sinu). We calculate Fi-“j.

i. Preparation.
We have

0w = (—sinucosv, —sinusinv, cosu), o,=(—cosusinv,cosucosv,0),
N = (cosucosv,cosusinv, sinu)

Ouy = (—cosucosv,—cosusinv, —sinu),

Ouv (sinusinv, —sinu cosv,0),
vy = (—cosucosv, —cosusinwv,0).
ii. Solving for Ffj.

e I'%. We need to solve

—COS U COS v —sin u cos v —cos u sin v
—cosu sin v = TI' —sinwu sin v + T3 COS U COS ¥
—sinu cos u 0

COS U COS U
L{ cosusinv
sin u

It is easy to see that I'l;=T1%,=0,L=—1.

e I'%,. We need to solve

sin u sin v —sin u cos v —cosu sinwv
—sin u cosv = F%g —sinu sin v + P%Q COS U COS ¥
0 cos u 0
COS U COS U
M| cosusinv
sinu

To solve this we first notice that

sin u sin v COS U COS U
M=| —sinwcosv |-| cosusinv |=0.
0 sin

A moment’s inspection to

sin u sin v —SIn % CoS vV —Cos U SIinv
—sinucosv |=Tiy| —sinusinv |+IT%| cosucosv
0 Ccos U 0

reveals that ['15=0, %, = —tanu.
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e T'%, We need to solve

—COoS U COS v —sin u cos v —cos u sin v
—cosu sinv = Ti, —sinwu sin v + I3, COS U COS ¥ +
0 cos u 0
COS U COS U
N| cosusinv |. (10)
sin u

This time we see that

—COS U COS ¥ COS U COS U
N=| —cosusinv |-| cosusinv |=—cos?u. (11)
0 sinu

Now the equation for the third component becomes
0=T4%ycosu+ (—cos?u) sinu (12)
which gives
'35 =sinu cos u. (13)
Substituting the values of N and I'}, into (10) gives I'3,=0.

The parallel transport equations now become

G+ (sinucosu) v =0, f— (tanu) v a=0. (14)

Thus w is parallel along ~ if and only if (14) holds.
Now notice that unless sinu =0, that is 7 is the big circle, the solution does not satisfy
a=p3=0.

Remark 2. Feel free to apply the formulas . We have
E=1, F=0, G = cos®u. (15)
This leads to

_ GE,-2FF.+FE, 2EF, —EE,+FIE,

1 _ 2 _

Fi= 2(EG —TF?) =0, = 2(EG - F?) =0,
GE,-FG EG.-FE

1 v u_ 2 __ U v

F12_—2 (EG— F2) O, F12 —2 (EG — 1F2) tanu, (16)

o 2GF -GG -FGy__ 9 BEG-2FF,+FGu_,

2T 2(EG — F?) - BT (EG-F?)

2. Geodesics: Definition and Basic Properties

We have seen that there are three equivalent ways to characterize a curve ~ on a surface S
being “as straight as possible” curves on a curved surface,

1. Curvature of the curve at p € vy equals |k,(p)| where £, (p) is the normal curvature of
S at p in the tangent direction of ~.



Differential Geometry of Curves & Surfaces

2. The geodesic curvature of the curve is zero, that is 4(t) =0;

3. The covariant derivative of the unit tangent vector of the curve is zero along the curve,
that is V., T'=0.

Now we give a name to these “as straight as possible” curves.

DEFINITION 3. (GEODESICS) A parametrized curve y(t) on the surface S is called a geodesic
if V(1) =0.

Exercise 1. In last lecture we claimed that V,w =0 is independent of parametrization of the curve. Is
there any contradiction here?

PROPOSITION 4. Let y(t) be a geodesic. Then ||7(t)|| is constant.

Proof. We have
0=Vyy=7—(7-Ns) Ns. (17)

Thus 4 || Ns, consequently 4L+ and the conclusion follows. O

Remark 5. By this definition a “geodesic” refers to a curve, not a trace. On the other hand,
if a curve «(¢) can be re-parametrized to be a geodesic, it will be called a “pre-geodesic”.

3. Geodesic equations

e !An arc length parametrized curve v(s) =o(u(s),v(s)) is a geodesic <=

d

S (EitFo) = %(Eu(u)%wuum@u(v)?)a (18)
%(FH@@) _ %(Ev(u)umvuw@(v)?). (19)

(18-19) are called geodesic equations.
Proof. (18-19) is equivalent to k = |k, | everywhere along the curve. We recall that

k(s)=1ii(s) oy +1(5) 0y + 1U(8)? T +21(8) V(8) Ty +0(5)2 Tuo| (20)
and

Kn(8) = (1(8)? Ouu +21(8) U(S) Ty + V(8)? 0us) - Nis. (21)

Thus if k(s) = |k,(s)|, necessarily

(ti(s) oy +9(8) 0y + 1u(8)? Ty +20(8) V(8) T +0(5)* 00) || N (22)
or equivalently
(i) oy + () 0p 4+ 1U(8)? Ouu +20(8) 0(8) Oup+ 0(8)? Op) - 0, =0 (23)
and
(1i(8) oy +U(8) 0y + 1U(8)? Ty +21U(8) V(8) Ouo + V(8)? 04p) - 7, = 0. (24)

1. Theorem 9.2.1 of the textbook.
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Now we prove that (23) is equivalent to (18). The proof for (24) <= (19) is almost
identical and omitted.
Notice that

0w 0y=1E, 0y 0, =T, (25)
O-u'o-u o 1 . O-u'o-u . 1
e (B) 3B ne(S2) e
and finally
Ovw Ou= 0y Oy)y — O Opu =1, — % G.. (27)

Substituting these into (23) we obtain

B+ F i+ B, (i) + By + F, (0) — £ Gy (6)2=0. (28)
On the other hand, expanding the left hand side of (18) we have
%(Eu+ﬂ?z}) _ dE(“(CtlZ’ LIG) dF(“(QL’ v®) 4 Bit i
= E,(0)?+E,uv+F,u0+TF, (0)?+Ei+F. (29)
The conclusion now trivially follows. 0J

Remark 6. 2Any local isometry between two surfaces takes the geodesics of one
surface to the geodesics of the other.

Remark 7. It is useful to notice that
Eua+TFo=75(s)- oy, Fa+Go=75(s)- o, (30)

and the right hand side takes simpler form in matrix form:

Weo(2E)(1) dea(3E)() @

e JAlternatively, we can start from the equivalent characterization V. y=0 and obtain
the following equations.

i+ (1)2+ 2T uv + Tl (0)2 = 0, (32)
G +T3 (0)2+ 2100 +T3,(0)? = 0. (33)

Remark 8. (32) and (33) take simple matrix forms:

1 1 g
i+ ( v)<£i ?iz><z>:o (34)

2. Corollary 9.2.7 of the textbook.
3. Proposition 9.2.3 of the textbook.
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.. .o r?, 1? U
i+ (4 v)(é: Féi)(@)zo'

The pattern would be crystal clear if we replace u by u; and v by us.

and

(35)

e We note that in deriving (18-19), we have assumed arc length parametrization, while
in deriving (32-33) this assumption is not needed. Nevertheless, (18-19) is equivalent

to (32-33). In particular, we have the following.

PROPOSITION 9. If y(t) = o (u(t),v(t)) satisfy (18-19), then ||y(t)| is a constant.

Exercise 2. Prove Proposition 9 in two ways.
i. Directly calculate %Hﬁ(t)”;
ii. Show that (18-19) and (32-33) are equivalent.

4. Examples (Clairaut’s Theorem)

Example 10. “We consider a surface of revolution
o(u,v)=(f(u)cosv, f(u)sinv,u).
We have
ou=(f"(u)cosv, f'(u)sinv, 1), oy=(—f(u)sinv, f(u)coswv,0)
which leads to
E=1+ f'(u)? F =0, G=f(u)*
Thus (18-19) becomes

%((Hf’(U)z) w) = f'w) f"(w) (@) + fu) f'(u) ()%,

d b
L (W?d) = 0.

We see that f(u)?v=C is a constant. The first equation simplifies to
(L4 fr(w)?)i= f(u) f'(u) (9)*

We see that

e v =constant are geodesics;

o u=ug where f'(up) =0 are geodesics.

e We see that

V1t f(u)?*a

VI f(u)?) (@) + fu)? (0)?

cosZ(oy, )=

(42)

Exercise 3. Prove (42) though calculation using the first fundamental form, without explicit

application of (37).

4. Proposition 9.3.1, 9.3.2 of the textbook.
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which gives

. o N f(w)?(v)?

o )= T P P + T 0 1)
Now notice that, as (t) is geodesic, (1+ f/(u)?) (u)?
Consequently we have

(@)*+ f(u)? (0)*=||7(t)]|*=constant.

f(u)?sin®/ (o, ) = constant. (44)

Finally, if this constant if not zero, by continuity and the assumption that f(u) 0,
we must have

f(u)sinZ(o,, 7) = constant. (45)
Thus if (%) is a geodesic, then there is a constant ¢y such that
. . Co
sin(oy, V) = ——. 46
(00 ) =% (16)

On the other hand, if (¢) is a curve on the surface satisfying (46), then its arc length
parametrization I'(s) still satisfies (46), and it turns out that I'(s) is a geodesic.

Exercise 4. Prove that (46)<=-(40). Next prove that if ||7(¢)|| = constant and ~(t) satisfies
one of (18-19), then it must satisfy the other. This means that (39) is also satisfied.

In summary, we have

THEOREM 11. (CLAIRAUT’S THEOREM) Geodesics on a surface of revolution o(u,
v)=(f(u)cosv, f(u)sinv,u) is characterized by (}0).

Example 12. Let S be the unit sphere. This of course is a surface of revolution. We re-
write it as

(f(u)cosv, f(u)sinv,u) (47)

where f(u) = cos(arcsin u) = v1—u? By Example 10 we see that for any geodesic (s) =
(f(u(s)) cosv(s), f(u(s))sinwv(s),u(s)), parametrized by arc length, there holds

(1 —u?) o= f(u)?0=constant =: c,. (48)

On the other hand, as ||§(s)|| =1 we have

= ) 4 f ) )+ () = 2 (1= ) ()2 (49)
Therefore

1 - E=u?+ ()2 (50)

Now we have (we simply write u for u(s))

v(s) = (V1—u*cosv,V1—u’sinv,u) (51)

N [ —uu Y e D 5 — .
7(3)-(—_1_uzcosv V1 usmvv,—msmv—i-\/l ucosvv,u). (52)



Differential Geometry of Curves & Surfaces

Consequently
. USINV — CouUCOSV U COSV + Cousinv
5) X y(s)= ,— , C 53
CRSOR E=— e, (53
Now calculate (using (48) and (50) whenever applicable)
i(usinv — coucosv> _ USInv+UCcoSVU — CoUCOSV + cousinv v
ds V1—u? V1—u?
ut (Usinv — coucosv)
Vi—u?’
(1 —u?)sinv 4 (cf+(u)?)usinv
V1I—u?’
_i(1—u¥)sinv+ (1 —u?) usinv (54)
V= .
Finally notice that differentiating (50) gives
(ii +u) 1= 0. (55)

Thus .if U # O,. there holds i = —u and consequently %(%) = 0. Similarly
%(—%) =0 and 7(s) x Y(s) is a constant vector. This implies ¥(s) lies in a plane
passing the origin and must be part of a big circle.

Exercise 5. Rigorously prove this last claim: Let y(s) be a curve on the unit sphere parametrized by
arc length. Assume that y(s) x §(s) is a constant vector. Then ~y(s) lies in a plane passing the origin.

Exercise 6. What if «=07?

5. Geodesics as shortest paths

e On the flat plane, the shortest path connecting any two points is the one that is part
of a geodesic, which is a straight line.

e Set up. Let p1, po € S and let vy be the shortest path connecting py, po. Parametrize
v by arc length o(ug(s), vo(s)). Set v(s1) = p1, Y(s2) = p2. Now let (us(s), vi(s)) be
an arbitrary vector field along (ug(s), vo(s)) in IR* and A(s): R — R be such that
A(s1) = A(s2) = 0. Let 7 € R and denote by 7, the curve o(ug + 7 A u1, vo + TA v1).
Finally denote

-

e Calculus of variations. We have

o [

S2 d d d

d 1/2
E(Uo-i-T/\ V1) Oy ds. (57)

() +7A(8) 1), vo(s) + TA(s) v1(s)) | ds. (56)

ds

i(uo +7Auy) o+ i(vo +7Avy) 0y ds

ds ds
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Here it is crucial to realize that o, 0, are evaluated at (ug+ 7 A uy, vo+ 7Avq). In
particular, they are dependent on 7.
Now we calculate

S92 . .
L'0) = / (Eo 03 + 2 Fy tig v + Go 1) /2 [(uo outVo0y) - (()\ul) out (Avy) oy +
s1
ﬂo ()\Ul Oyu + )\Ul qu) +1'Jo ()\ UL Oyy T+ )\Ul O-vv))} ds
52 . .
- / (Aiwr) [(tio 0 + 50 0v) - 0] + (Aon) [(ti 7+ T0 00) - 0] s

1

+/ (Aur) [(to Oun + V0 Ous) * (o 0 + Vo 0y)] ds

1

+/82 ()\ Ul) [(’UQ qu‘i"l}o O'm,) . (’U(] O'U—i—l)o O'U)] ds. (58)

1
Note that in the above we have used the fact that FEq w3 + 2 Fy 1 0o + Go U8 =
|7(s)]|>=1. Also note that in (58) oy, ..., 0y, are all evaluated at (ug,vo) now.
Next we integrate the first integral in (58) by parts and collect all the u; terms
together, and all the v, terms together.

L'0) = —/ (Auy) [%((uoaﬁvo Ov) - 0u) — (Tg Oy + Vo Oun) - (uoau%—z}oav)} ds

1

_/ ()\ Ul) l%((uoau—l-@o%) : Uv) - (uOqu‘{’{)O va) : (uOUu‘l'{)O O-U)} dS-

Due to the arbitrariness of uq,v1, we conclude

(g0 +i00)-0) = (o T+ 900u0) - (o0 + 004), (59)
E((uo Ou+100y) - 0y) = (o Tup+ Vo Tvy) - (o Ty =+ U0 0y). (60)
Simple calculation now gives
(B +F ) = 3 (B (o) + 2 Fy g+ G (8)), (61)
L (Figt Gio) = 5 (By (i) + 2 Futiot+ T (40)?). (62)

Exercise 7. Derive (61-62) from (59-60).

Remark 13. Note that a shortest path must be a geodesic but a geodesic does not neces-
sarily give shortest path.

Remark 14. °It can be show that if v(s) = o(u(s), v(s)) satisfy the geodesic equations,
then ||9(s)|| is a constant. On the other hand, an arbitrary curve y(t) = o(u(t), v(t)), not
necessarily with constant speed, has the same trace as a geodesic if and only if 4 (Ngx ¥)=0
along .

5. Proposition 9.1.2 and Exercise 9.1.2 of the textbook.
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