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Please do not hesitate to interrupt me if you have a question.
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Motivation, Definitions, and

Properties



Motivation

• Parallel vectors in Euclidean spaces;

• Difficulty for curved surfaces: How to compare two

vectors belonging to two different tangent spaces.

• Treating them as vectors in the ambient Euclidean space:

Not working.

• Idea: ”Move” a vector from one point to the other,

without changing direction, and then compare.
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Tangent vector field of a surface along a curve

• C = γ(t): A curve on S ;

• w : C 7→ R3, w(p) ∈ TpS for every p ∈ C;

• w is called a ”tangent vector field along C”.

• Can similarly define a ”tangent vector field” of S .
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Covariant derivative

• Idea. ”Horizontal” change of a vector field.

• Definition.

∇γw = ẇ − (ẇ · NS)NS

where NS is the unit normal of the surface.

• Parallel. A vector field w is parallel along γ(t):

∇γw = 0 at every point along the curve.

• Properties.

1. ∇γw = 0⇔ ẇ⊥TpS ⇔ ẇ(t) ‖ NS(p).

2. ∇γw = 0 is independent of parametrization of the curve.
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Parallel vectors

A vector field w is parallel along γ(t): ∇γw = 0.

Example

1. S : The xy plane; γ(t) = (u(t), v(t), 0), w(t) = γ̇(t);

2. S : The unit cylinder; γ(t) = (cos u(t), sin u(t), v(t)),

w(t) = γ̇(t);

3. S : The unit sphere; γ(t): Fixed latitude.

• w(t) = γ̇(t);

• w(t) is the unit vector ”pointing north”.
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Properties

1. There is exactly one vector field along the curve parallel

to a fixed tangent vector at some fixed point p0 on the

curve;

2. If two parametrizations of γ has the same γ̇ at a point p,

then ∇γw are the same at p;

3. Thus the covariant derivative is a function of the point p

and the tangent direction γ̇ ∈ TpS .

4. Let γ(t) be a curve on S with T (t) its unit tangent

vector. Then the following are equivalent (along the

curve).

4.1 κ = |κn|;
4.2 κg = 0;

4.3 ∇γT = 0;
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Parallel transport map

p, q ∈ S ; w0 ∈ TpS ,w1 ∈ TqS .

• It does not make sense to say “w0 and w1 are parallel”;

Example: Unit sphere.

• Have to say w0 and w1 are parallel along γ, where γ is a

curve in S connecting p, q;

• Parallel transport map. w(t): Unique vector field

along γ parallel to w0. The parallel transport of w0 to q

along γ is w at q.

• Notation.

Πpq
γ : TpS 7→ TqS .

• Πpq
γ is an isometry.
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Calculation and Christoffel

Symbols



Christoffel symbols

Given: E,F,G,L,M,N

σuu = Γ1
11σu + Γ2

11σv + LN (1)

σuv = Γ1
12σu + Γ2

12σv + MN (2)

σvv = Γ1
22σu + Γ2

22σv + NN (3)

• See textbook or lecture notes for formulas for Γk
ij ;

• Spot the pattern;
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Parallel transport equation

w(t) = α(t)σu + β(t)σv along γ(t) = σ(u(t), v(t)).

w(t) is parallel along γ(t) if and only if

α̇ + (Γ1
11u̇ + Γ1

12v̇)α + (Γ1
12u̇ + Γ1

22v̇)β = 0 (4)

β̇ + (Γ2
11u̇ + Γ2

12v̇)α + (Γ2
12u̇ + Γ2

22v̇)β = 0. (5)
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Examples

Conditions for w(t) = α(t)σu + β(t)σv to be parallel along γ.

1. Plane;

2. Cylinder;

3. Sphere.
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Looking Back and Forward



Summary

Required: §7.4, §9.1–9.4; Optional: §9.5.

• Properties.

1. Covariant derivative: ∇γw = ẇ − (ẇ · NS)NS ;

2. Parallel vector field along γ: ∇γw = 0;

3. Parallel transport map;

4. Christoffel symbols.

σuu = Γ1
11σu + Γ2

11σv + LN (6)

σuv = Γ1
12σu + Γ2

12σv + MN (7)

σvv = Γ1
22σu + Γ2

22σv + NN (8)

5. Parallel transport equations.

α̇ + (Γ1
11u̇ + Γ1

12v̇)α + (Γ1
12u̇ + Γ1

22v̇)β = 0 (9)

β̇ + (Γ2
11u̇ + Γ2

12v̇)α + (Γ2
12u̇ + Γ2

22v̇)β = 0. (10) 11



See you Thursday!

Geodesics.

1. Motivation and definition;

2. Geodesic equations;

3. Shortest path.
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