
Lectures 15: Parallel Transport

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we study the how two vectors at di�erent points on a
surface S can be said to be �parallel� to each other.

The required textbook sections are �7.4, �9.1�9.4. The optional sections
are �9.5

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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1. Motivation and de�nitions
� In classical geometry, one of the most important ideas is parallelism. Two vectors

are �parallel� if we can �move� one of them, without changing its direction, to coincide
with the other.

� However on a curved surface �without changing its direction� becomes problematic.
For example consider the following situation:

Consider the unit sphere. Let B be the north pole and A;B be two points on the
equator. Then clearly vB should be the tangent vector at B that is �parallel� to vA at
A. Similarly vC k vB, v~A k vC. However it is clear that vAk v~A.

A

B

C

vA

vB

vC v~A

Figure 1. vA k vB; vB k vC ; vC k v~A.

� One possible way to �x this is the following.

� Recall that in Euclidean geometry, to guarantee �without changing its direc-
tion�, we draw a straight line connecting the two base points, and then measure
the angles between the vectors and this line. As straight line segments are
shortest paths between the two base points, this approach works for curved
surfaces.

� Another possibility is the following more intuitive appraoch.

� Instead of comparing vectors at two di�erent points, we consider the following situ-
ation.

Let C be a curve on a surface S. Let w be a tangent vector �eld along
C, that is w:S 7!R3 such that w(p)2TpS for every p2 .

Remark 1. As soon as C is parametrized by some (t), we can form the composite
function w((t)). When no confusion should arise, we abuse notation a bit and simply
write w(t).

Remark 2. It is easy to see how �a tangent vector �eld on S� should be de�ned.

Exercise 1. Give a reasonable de�nition to a �tangent vector �eld on S�.

We would like to give de�nition to �w does not change direction along C�.
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� One reasonable de�nition is the following.

� Covariant derivative.
In the above setting, the covariant derivative of w along (t) is given by the

tangential component of w_ :

rw=w_ ¡ (w_ �NS)NS (1)

where NS is the unit normal of the surface.

� Then we say w to be parallel along  if rw=0 at every point of .

Remark 3. Clearly,

rw=0()w_?T(t)S()w_ (t) kNS((t)): (2)

Example 4. Let S be the x-y plane. Let (t)=(u(t); v(t);0). Let w(t) := _(t)=(u_(t); v_(t);0)
and

rw(t)= �(t)¡ [�(t) �NS(t)]NS(t)= (u�(t); v�(t); 0) (3)

as NS(t)=(0;0;1) for all t. Consequently _(t) is parallel along  if and only if u�(t)=v�(t)=0,
that is u= a1 t+ a0; v= b1 t+ b0.

Thus a plane curve is �straight� when it is a straight line.

Remark 5. Thus we see that �parallel transport� is slightly di�erent from our intuitive idea
of �parallel�.

Example 6. Let S be the cylinder �(u;v)=(cosu; sinu;v). Let (t)=(cosu(t); sinu(t); v(t)).
Let

w(t) := _(t)= ((¡sin u(t)) u_(t); (cos u(t))u_(t); v_(t)) (4)

and

w_ (t)= ((¡cosu)u_2¡ (sin u) u�; (¡sinu)u_2+(cos u) u�; v�): (5)

On the other hand, we have

�u=(¡sinu; cosu; 0); �v=(0; 0; 1); (6)

therefore

NS=
�u��v
k�u� �vk

=(cos u; sinu; 0): (7)

Thus we can calculate

rw(t)= (¡(sin u) u�; (cosu)u�; v�): (8)

Therefore rw(t)= 0()

¡(sinu)u�=0; (cosu) u�=0; v�=0: (9)

This is equivalent to u�=0; v�=0.
Thus a cylindrical curve is �straight� when it is of the form (cosu(t); sinu(t); v(t)) where

(u(t); v(t)) is a straight line in the plane.
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Example 7. Let S be the unit sphere given by �(u; v)= (cos u cos v; cos u sin v; sin u). We
consider (t)=(cosu0 cos t;cosu0 sin t;sinu0). Let w(t)= _(t) be the tangent vector. We have

w_ (t)= (¡cos u0 cos t;¡cosu0 sin t; 0): (10)

On the other hand we have

NS(u; v)= (cosu cos v; cosu sin v; sinu): (11)

Therefore

rw(t)=
sin 2u0
2

(¡sinu0 cos t;¡sin u0 sin t; cosu0): (12)

We see that it is zero only if u0=0, that is  is part of a big circle.

Exercise 2. What about u0=�/2?

Example 8. Of course we should not restrict ourselves to the tangent of the curve. We
take the setting of Example 7 and let w(t) := (¡sin u0 cos t;¡sin u0 sin t; cos u0) be the unit
tangent vector at (t) �pointing north�.

We have

w_ (t)= (sin u0 sin t;¡sin u0 cos t; 0): (13)

Again

NS(u; v)= (cosu cos v; cosu sin v; sinu): (14)

Therefore

rw(t)= sinu0 (sin t;¡cos t; 0): (15)

Again w(t) is parallel along  if and only if u0=0, that is  is part of a big circle.

Exercise 3. Study rw(t) for w(t)= _(t) for an arbitrary spherical curve.

2. Properties

Remark 9. 1Let  be a curve on a surface S and let w0 be a tangent vector of S at the
point (t0). Then there is exactly one tangent vector �eld w that is parallel along  and is
such that w(t0)=w0.

Lemma 10. Let (t) be a curve on S. Let w be a tangent vector �eld along . Then the
condition rw=0 is independent of the parametrization of .

Proof. Let (t); ~(t~) be two di�erent parametrizations of (t). Then there is a function
T~(t) such that ~(t~)= 

¡
T~(t)

�
. Since w is a vector �eld along , we have

w~(t~)=w
¡
T~(t)

�
: (16)

Consequently

r~w~ =w_ T~_ ¡
�
w_ T~_ �NS

�
NS=T~_rw: (17)

1. Corollary 7.4.6 of the textbook.
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Therefore rw=0()r~w~ =0. �

Remark 11. Note that rw=/ r~w~.

Exercise 4. Is rw independent of the parametrization of ?

Remark 12. Lemma 10 justi�es the notation r where parametrization is not involved.
The situation can be further simpli�ed by the following lemma, which says that covariant
derivative is simply �directional derivative� on surfaces.

Lemma 13. Let ; ~ be two curves on S that are tangent at p2S. Let w be a tangent vector
�eld of S, that is w: S 7! R3 with w(p) 2 TpS. Let ; ~ be parametrized by (t); ~(t~) with
p= (t0)= ~(t~0) and furthermore _(t0)= ~_(t~0). Then rw=r~w at p.

Proof. We have
dw
dt
(t0)=Dpw(_(t0))=Dpw(x~_(t~0))=

dw

dt~
(t~0): (18)

Consequently

rw=
dw
dt
(t0)¡

�
dw
dt
(t0) �NS

�
NS=

dw

dt~
(t~0)¡

�
dw

dt~
(t~0) �NS

�
NS=r~w; (19)

exactly what we need to prove. �

Lemma 14. Let (t) be a curve on S. Then the following are equivalent.

i. Along  there holds �(t)= j�nj;

ii. Along  there holds �g=0;

iii. T (t), the unit tangent vector to , is parallel along .

Remark 15. Thus the three seemingly di�erent ways to characterize �as straight as possible�
curves on a curved surface,

1. �(t)= j�n((t))j,

2. �g(t)= 0;

3. rT (t)= 0,

are all equivalent.

Proof. Thanks to Lemma 10, we can take x(s) to be the arc length parametrization of .
Then recall that by de�nition of �n; �g we have

�(s)=�nNS+ �g (T �NS): (20)

Consequently

rT = �(s)¡�nNS ; (21)

and the conclusion follows. �
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Exercise 5. There is a minor gap in the above argument. Can you �x it?

3. Calculation of the covariant derivative and Christo�el symbols
� How to calculate covariant derivative on an abstract surface, with only the two fun-

damental forms given?

� Set up. Let S be a surface parametrized by the patch �(u; v). Let (t)=�(u(t); v(t))
and w=w(u; v) be a tangent vector �eld along . Therefore there are �(t); �(t) such
that w=��u+ ��v.

� Now we calculate

w_ = �_ �u+ �_ �v+� [�uuu_ +�uv v_] + � [�vuu_ + �vv v_]

= �_ �u+ �_ �v+(�u_)�uu+(� v_ + �u_) �uv+(� v_) �vv: (22)

Therefore

rw = w_ ¡ (w_ �NS)NS

= �_ �u+ �_ �v

+(�u_) (�uu¡ (�uu �NS)NS)

+(� v_ + �u_) (�uv¡ (�uv �NS)NS)

+(� v_) (�vv¡ (�vv �NS)NS): (23)

� To understand this formula we introduce Christo�el symbols ¡ijk and the related Gauss
equations.

Proposition 16. (Gauss Equations) Let �(u; v) be a surface patch with �rst and
second fundamental forms

Edu2+2Fdu dv+Gdv2 and Ldu2+2Mdu dv+Ndv2: (24)

Then

�uu = ¡11
1 �u+¡11

2 �v+LN; (25)
�uv = ¡12

1 �u+¡12
2 �v+MN; (26)

�vv = ¡22
1 �u+¡22

2 �v+NN; (27)

where

¡11
1 =

GEu¡ 2FFu+FEv

2 (EG¡F2)
; ¡11

2 =
2EFu¡EEv+FEu

2 (EG¡F2)
;

¡12
1 =

GEv¡FGu

2 (EG¡F2)
; ¡12

2 =
EGu¡FEv

2 (EG¡F2)
;

¡22
1 =

2GFv¡GGu¡FGv

2 (EG¡F2)
; ¡22

2 =
EGv¡ 2FFv+FGu

2 (EG¡F2)
:

(28)

The six ¡ coe�cients in these formulas are called Christo�el symbols.

Remark 17. The formulas (28) look very complicated. However we will see in the
proof below that it is not hard to derive them �on the �y�.
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Proof. First note that as f�u; �v; N g form a basis of R3 at p, there must exist nine
numbers such that (25�27) hold. Take inner product of (25�27) with N we see that
the coe�cients for N must be L;M;N.

Now consider (25). Taking inner product with �u and �v we have

E¡11
1 +F¡11

2 = �uu ��u=
�
E
2

�
u

; (29)

F¡11
1 +G¡11

2 = �uv ��v=
�
G
2

�
u

: (30)

The �rst line of formulas in (28) immediately follows. The proofs for the other four
formulas are similar and left as exercise. �

� With the help of Christo�el symbols, we can characterize conditions for a tangent
vector �eld w(t) := �(t)�u+ �(t) �v to be parallel along a curve (t)= �(u(t); v(t)).

Theorem 18. 2w(t) is parallel along (t) if and only if the following equations are
satis�ed:

�_ + (¡11
1 u_ +¡12

1 v_)�+(¡12
1 u_ +¡22

1 v_) � = 0;

�_ + (¡11
2 u_ +¡12

2 v_)�+(¡12
2 u_ +¡22

2 v_) � = 0:
(31)

Proof. This follows easily from (25�27). �

Remark 19. Note that the above equations are easier to remember in matrix form:

�_ +

" 
¡11
1 ¡12

1

¡12
1 ¡22

1

!�
u_
v_

�#
�
�
�
�

�
=0; (32)

and

�_ +

" 
¡11
2 ¡12

2

¡12
2 ¡22

2

!�
u_
v_

�#
�
�
�
�

�
=0: (33)

Remark 20. Also keep in mind that when we �upgrade� to Riemannian geometry,
a �surface� will not be given as a �surface patch� with explicit formulas, but as a
collection of quantities de�ned at every p2S: E;F;G;L;M;N and ¡ijk .

Observe that in (31) only the �rst fundamental form and the tangent direction
_(t) are involved.

� Examples and remarks.

Example 21. Let S be the x-y plane, parametrized by �(u; v)= (u; v; 0). Then we
easily have ¡ijk =0 for all i; j ; k. (31) now becomes

�_ = �_ = 0: (34)

2. Proposition 7.4.5 of the textbook.
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Just as we expected.

Remark 22. The Christo�el symbol ¡ijk is roughly the k-th component of the change
of the i-th coordinate vector along the j-th direction.

Note that if ¡ijk = 0 for all i; j ; k, then the coordinate vectors �u; �v are parallel
along u= const and v= const.

Example 23. Let S be the cylinder (cosu; sin u; v). Then we have

�u=(¡sin u; cosu; 0); �v=(0; 0; 1) (35)

and

E=1; F=0; G=1: (36)

Thus ¡ijk =0 for all i; j ; k. (31) again gives

�_ = �_ = 0: (37)

Example 24. Let S be the unit sphere (cosu cos v; cosu sin v; sin u). We have

E=1; F=0; G= cos2u: (38)

This leads to

¡11
1 =

GEu¡ 2FFu+FEv

2 (EG¡F2)
= 0; ¡11

2 =
2EFu¡EEv+FEu

2 (EG¡F2)
= 0;

¡12
1 =

GEv¡FGu

2 (EG¡F2)
= 0; ¡12

2 =
EGu¡FEv

2 (EG¡F2)
=¡tanu;

¡22
1 =

2GFv¡GGu¡FGv

2 (EG¡F2)
= sin u cosu; ¡22

2 =
EGv¡ 2FFv+FGu

2 (EG¡F2)
= 0:

(39)

(31) now becomes

�_ + (sinu cos u) v_ �=0; �_ ¡ (tanu) v_�=0: (40)

Thus w is parallel along  if and only if (40) holds.

4. Parallel transport map

Definition 25. Let p; q 2 S and let (t) be a curve on S connecting p; q with p = (t0);
q = (t1). Let w0 2 TpS. Then there is a unique vector �eld w(t) parallel along  with
w(t0)=w0. The map �

pq:TpS 7!TqS taking w0 to w(t1) is called parallel transport from p to
q along .

Proposition 26. �
pq is an isometry.

Proof. We have
d
dt
(w �w~)=w_ �w~ +w �w~_ = 0: (41)
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as w_ ; w~_ kN . Therefore for w0; w~02TpS,

�
pq(w0) ��

pq(w~0)¡w0 �w~0=
Z
t0

t1 d
dt
(w �w~) dt=0; (42)

and the conclusion follows. �

Example 27. Let S be the unit sphere (cos u cos v; cos u sin v; sin u). We have seen that a
vector �eld �(t)�u+ �(t)�v is parallel along  is equivalent to

�_ + (sinu cos u) v_ �=0; �_ ¡ (tanu) v_�=0: (43)

Now notice that unless sin u = 0, that is  is the big circle, the solution does not satisfy
�_ = �_ = 0.
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