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Midterm Course and Instruction Feedback

e More examples in class.
o Will try;
e Much of "proofs” etc. can also be read as examples of
calculation;
e A certain percent of homework problems are intentionally
designed to be different from examples in class.
e Use whiteboard instead of slides.
e Have made fonts larger — does it help? Please let me
know;
e Slides are posted online before lectures — use phones?
e Will put less details on slides, just outcome of major
steps;
e Will stop using slides after 2nd midterm if the above do
not work.
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Please do not hesitate to interrupt me if you have a question.



Review



Formulas
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3. Mean curvature.
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Exampes



Calculation of H, K, k1, kp, t1, t.

z = ax? SF 5)/2, H, K,/il,/-f,z, t;, tr at (070,0)

1. Surface patch: o(u,v) = (u, v, au® + fv?);
2. (0,0,0) = ¢(0,0). So all calculation should be done at
u=v=_0;

3. Calculate
k1 =2a,t; = (1,0,0); kp=20,t =(0,1,0);
H=a+p3 K=4ap.

In fact, near every p € S the surface is approximately

z = 2(k1X* + koy?) if we take T,S to be the x — y plane.



Minimal Surfaces




The problem

C: Curve. Find surface S: 9S = C, minimal surface area.

Example
Let C be a simple closed plane curve. Then the minimal
surface is the part of the plane enclosed by C.

e Note that we have not been fully rigorous.



o%(u, v): Minimal.

o(u,v): U R o(0U) = {0}.

e 0" :=0"+70.
/Ha x o ||dudv.
We have A(0) < A(7), thus A'(T) =



Variational calculus

1. 02X0$:V0+7'V1+7'2V2,

Vozagxas, Vlzagxav—l—auxae, Vo =0, X0,.
2. A(T) = [,/ Vo Vo+27Vo- Vi + O(72)dudv.
Vo - Vi [ X%

:>A/0 = dudv = - -
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3. Vo- Vi =E(02-0,) —F(0% -0, +0,-0%) + G(c° - 5,).
4. Simplify.
oy = C1102+C1208+C13/V0, oy = C21<72+C2208+C23N0-
VQ : Vl = (C11 + C22)(EG — IEQ)
5. Let o(u,v) = f(u, v)N°(u,v). We have
Ci1 + Cp = —2fH.



Minimal surfaces

| Minimal surface: H =0.]

Example

1. A plane region is minimal;
2. A spherical region is not minimal;

3. A cylindrical region is not minimal.



Minimal surface of revolution.

’If cylinder is not minimal, what is?‘

Example

1. o(u,v) = (f(u)cosv, f(u)sinv,g(u)). u: arc length for
the plane curve (f(u),g(u)). Assume g # 0.
H=1(fe-fe+8)=1(4-1).

H = 0 becomes ff =1 — f2.

Solve the equation: f = im

Solve for g.

f = Lcosh(a(g — c)).

o Gl > W N

Catenoid: Rotating a catenary. <


https://youtu.be/JvOONik2KbI
https://en.wikipedia.org/wiki/Catenary

Minimal ruled surfaces.

’The only minimal ruled surfaces are plane and heIicoid.‘

1. o(u,v) =~(u) + vi(u). Assume ||/|| = H/H = 1.

2.

H=0<[5+vi—20-D-[(y+vi) x 1] =0.
3. Comparing powers of 1, v, v2, obtain three equations.
4. The firstis (/ x /) - | = 0 which leads to | = —I.
5. Show that 4 = 0.
6. N =/ x | constant vector.

Y(u) = (F(u), g(u), vou + 71).
Then solve f, g.

Catenoid < Helicoid. 10


https://youtu.be/E6JtYMVayeI

Developable Surfaces




Flat surface

’A surface is flat if K = 0. Developable < Flat. ‘

Flat surfaces are ruled.
1. o(u,v) such that
Edu? 4+ Gdv?, Ldu? 4+ Ndv?.,

2. K=0=L=0o0or N=0. Assume N = 0.
3. N,=—-E'Lo,, N, =0.
4. y(v) :=o(u, v). 7 || 7 = straight line.

11



Looking Back and Forward




Required: §8.1,8.2; Optional: §8.3—8.6.‘

e Properties.

1. Developable & K = 0;
2. Minimal & H =0;

12



See you next Tuesday!

Parallel transport.

1. Motivation and definition;
2. Covariant derivative;

3. Christoffel symbols.
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