
Lectures 14: Curvatures for Surfaces II

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we introduce several quantities that characterize the
curving of a surface patch.

The required textbook sections are �8.1�8.2. The optional sections are
�8.3�8.6.

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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� Principal curvatures.
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� Gaussian curvature.
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� Relations.

H =
�1+�2
2

; K = �1�2; �1;2=
H � H2¡ 4K

p

2
: (6)

�n((cos �) t1+(sin �) t2)=�1 cos2�+�2 sin2�: (7)

Principal curvature, mean curvature, Gaussian curvature

Remark 1. We have seen last time that if �1= �2 everywhere, then S is part of plane or
sphere.

1. Examples

Example 2. Consider the surface z=� x2+ � y2 where �; � 2R. Calculate H;K;�1; �2; t1;
t2 at the origin.

Solution. We take the surface patch �(u; v)= (u; v; � u2+ � v2). Then we have

�u=(1; 0; 2�u); �v=(0; 1; 2 � v); N =
(¡2�u;¡2 � v; 1)
1+4�2u2+4 �2 v2

p ; (8)

�uu=(0; 0; 2�); �uv=(0; 0; 0); �vv=(0; 0; 2 �): (9)

Thus at the origin which corresponds to u= v=0, we have

E=1; F=0; G=1; (10)

L=2�; M=0; N=2 �: (11)

Consequently we have (wlog assume �> �),

�1=2�; t1=(1; 0; 0); �2=2 �; t2=(0; 1; 0); (12)

H =�+ �; K =4��: (13)
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2. Minimal surfaces (optional)

2.1. The problem

� The so-called �Plateau's problem� asks the following questions: Given a closed curve
in the spaceR3, among the in�nitely many surfaces having this curve as its boundary,
which one has the minimal area?

Example 3. Let C be a simple closed plane curve. Then the minimal surface with C as its
boundary is the part of the plane enclosed by C.

Proof. Let U be the region of the plane that is enclosed by C. Let �:U 7!R3; �(u; v)= (u;
v; f(u; v)) be an arbitrary surface patch. All we need to show is that the area of �(u; v) is
no less than the area of U .

Exercise 1. Point out as many gaps as you can in the above set up. Can you �ll them?

Now we calculate

�u=(1; 0; fx); �v=(0; 1; fy) (14)

and

�u��v=(¡fx;¡fy; 1): (15)

Therefore we have

Area of � =

Z
U

k�u��vkdu dv

=

Z
U

1+ fx
2+ fy

2
p

du dv

=

Z
U

du dv=Area of U: (16)

Thus ends the proof. �

2.2. Variational analysis

� When the curve is not a plane curve the situation becomes much more complicated.

� We rely one variational analysis to obtain some characterizing equation for this min-
imal surface.

� Variational analysis is an upgrade of �taking derivative and set it to zero� in �rst year
calculus.

� Let �0(u; v): U 7! R3 be a surface patch for the minimal surface. Thus we have
�0(@U) = C. Now let �(u; v): U 7! R3 be an arbitrary surface patch satisfying
�(@U) = f0g. Thus at least for � 2 R with j� j small, we have �� := �0 + � � to be
another surface patch with the same boundary C.

� Now de�ne

A(� ) :=
Z
U

k�u� ��v�kdu dv (17)
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we must have A(0)6A(� ) for all � . Consequently we must have A0(� )= 0.

� We calculate

�u
� = �u

0+ � �u; �v
� = �v

0+ � �v (18)

and therefore

�u
� ��v� =�u

0��v0+ � [�u
0��v+ �u��v0] + � 2�u��v: (19)

Let's denote for now

V0 := �u
0��v0; V1 := �u

0� �v+ �u��v0; V2 := �u��v: (20)

� Thus we have

A(� )=
Z
U

V0 �V0+2 � V0 �V1+O(� 2)
p

du dv (21)

Taking � -derivative and setting � =0 we obtain

A0(0)=
Z
U

V0 �V1
V0 �V0

p du dv=

Z
U

V0 �V1
EG¡F2

p du dv: (22)

� To calculate V0 �V1 we use the vector identity

(a� b) � (c� d)= (a � c) (b � d)¡ (a � d) (b � c): (23)

This leads to

V0 �V1 = (�u
0��v0) � (�u0��v)+ (�u

0��v0) � (�u��v0)
= (�u

0 ��u0) (�v0 ��v)¡ (�u0 ��v) (�v0 ��u0)+ (�u
0 ��u) (�v0 ��v0)¡ (�u0 ��v0) (�u ��v0)

= E (�v
0 ��v)¡F (�u

0 ��v+ �u ��v0)+G (�u
0 ��u): (24)

� To simplify (24) we write

�u= c11�u
0+ c12�v

0+ c13N0; �v= c21�u
0+ c22�v

0+ c23N0: (25)

Therefore

�u ��u0=E c11+F c12; �u ��v0=F c11+G c12; (26)

�v ��u0=E c21+F c22; �v ��v0=F c21+G c22: (27)

Substituting into (24) we have

V0 �V1=(c11+ c22) (EG¡F2): (28)

Thus

A0(0)=
Z
U

(c11+ c22) EG¡F2
p

du dv (29)

� Finally, we notice that as � is arbitrary, we could restrict ourselves to �(u; v)= f(u;
v)N0(u; v) where f(u; v) is a scalar function vanishing on @U . Thus we have

�u= fNu
0+ fuN

0; �v= fNv
0+ fvN

0: (30)

Di�erential Geometry of Curves & Surfaces

4



Comparing with (25), and recalling

¡Nu
0= a11�u

0+ a12�v
0; ¡Nv

0= a21�u
0+ a22�v

0; a11+ a22=2H; (31)

we see that c11+ c22=¡2 fH. Consequently

A0(0)=¡2
Z
U

fH EG¡F2
p

du dv=¡2
Z
S0
fH dS (32)

where the last is the surface integral as de�ned in multivariable calculus.

� Since f is arbitrary, for A0(0)= 0 we must have H =0.

Definition 4. (Minimal surface) 1A minimal surface is a surface whose mean curvature
is zero everywhere.

2.3. Examples

Example 5. A plane region is a minimal surface; A spherical region is not minimal; A
cylindrical region is also not minimal.

Proof.

� Plane. �(u; v)= (u; v). As �uu=�uv=�vv=0, we have L=M=N=0. Consequently

H =
1

2
Tr
h�

E F
F G

�¡1� L M
M N

�i
=0.

� Sperical. Let S be part of a sphere of radius R centered at the origin. Then we easily
see that

Nu=R¡1�u; Nv=R¡1�v: (33)

Thus we have L=¡R¡1E;M=¡R¡1F;N=¡R¡1G, and

H =
1
2
Tr
��

E F
F G

�¡1� L M
M N

��
=
1
2
Tr

 
¡R¡1 0
0 ¡R¡1

!
=¡ 1

R
: (34)

� Cylinder. �(u; v)= (cosu; sin u; v). We have

�u=(¡sin u; cosu; 0); �v=(0; 0; 1); (35)

N =(cos u; sinu; 0); Nu=(¡sinu; cos u; 0); Nv=(0; 0; 0): (36)

Thus

E=1;F=0;G=1; L=1;M=0;N=0: (37)

Consequently

H =
1
2
Tr
��

1 0
0 1

�¡1� 1 0
0 0

��
=
1
2
: (38)

�

1. De�nition 12.1.2 in the textbook.
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Example 6. The only minimal surfaces of revolution are plane and catenoid.

Proof. Let �(u; v) = (f(u) cos v; f(u) sin v; g(u)) be the surface of revolution generated by
the plane curve (f(u); g(u)). We assume that u is the arc length parameter of this plane
curve, that is

f_2+ g_2=1: (39)

We further assume that g_ =/ 0. Note that this excludes the �plane� case. We also assume that
f > 0.

1. Calculate H.

�u=
¡
f_(u) cos v; f_(u) sin v; g_(u)

�
; �v=(¡f(u) sin v; f(u) cos v; 0): (40)

N =
�u��v
k�u��vk

=
¡
¡g_(u) cos v;¡g_(u) sin v; f_(u)

�
: (41)

�uu=
¡
f�(u) cos v; f�(u) sin v; g�(u)

�
; �uv=

¡
¡f_(u) sin v; f_(u) cos v; 0

�
; (42)

�vv=(¡f(u) cos v;¡f(u) sin v; 0): (43)

Thus

E=1; F=0; G= f 2(u); (44)

L= f_(u) g�(u)¡ f�(u) g_(u); M=0; N= f(u) g_(u): (45)

So

H =
1
2
Tr

"�
1 0
0 f 2

�¡1 
f_g�¡ f�g_ 0

0 f g_

!#
=
1
2

�
f_g�¡ f�g_ +

g_
f

�
: (46)

2. Equation for f . Setting H =0 we have

f f_g�¡ f f�g_ + g_ = 0: (47)

Now di�erentiating f_2+ g_2=1 we obtain f_f�+ g_ g�=0=) g�=¡f_f�

g_
. Substituting this

into (47) we obtain

f f�= g_2=1¡ f_2: (48)

3. Solve (48). We have

1= f f�+ f_2=
d
du

¡
f f_
�
=
1
2
d2

du2
(f 2): (49)

Therefore

f 2=u2+ c1u+ c2: (50)

Some change of variables gives

f(u)=
1
a

1+ a2u2
p

(51)
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for some parameter a.

4. Solve for g. We have

g_2=1¡ f_2=
1

1+ a2u2
=) g_ =� 1

1+ a2u2
p : (52)

To solve the equation we set G(v)= g(u) where v= a u. Thus

G_ =
1
a
g_(v/a)=�1

a
1

1+ v2
p : (53)

Solving this we have

G(v)=�1
a
sinh¡1v=) g(u)¡ c=�1

a
sinh¡1(a u): (54)

5. Finally we have

f =
1
a

1+ (a u)2
p

=
1
a

1+ sinh2 (a (g¡ c))
p

=
1
a
cosh(a (g¡ c)): (55)

This is the equation of a catenary and the surface is then a catenoid. �

Exercise 2. Solve the case g_ = 0.

Example 7. 2Any ruled minimal surface is an open subset of a plane or a helicoid.

Proof. Let �(u; v) = 
(u) + v l(u) be a surface patch for the ruled minimal surface. We
calculate

�u= 
_ + v l_; �v= l; �u��v=
¡

_ + v l_

�
� l

�uu= 
�+ v l�; �uv= l_; �vv=0
: (56)

Therefore

E=
¡

_ + v l_

�
�
¡

_ + v l_

�
; F=

¡

_ + v l_

�
� l; G= l � l;

L=

¡

�+ v l�

�
�
�¡

_ + v l_

�
� l
�

¡
_ + v l_

�
� l


 ; M=

l_ �
�¡

_ + v l_

�
� l
�

¡
_ + v l_

�
� l


 ; N=0:

(57)

Now we make simplifying assumptions.

� It is clear that we can assume kl(u)k=1. This simpli�es (57) to

E=
¡

_ + v l_

�
�
¡

_ + v l_

�
; F= 
_ � l; G=1;

L=

¡

�+ v l�

�
�
�¡

_ + v l_

�
� l
�

¡
_ + v l_

�
� l


 ; M=

l_ �
�¡

_ + v l_

�
� l
�

¡
_ + v l_

�
� l


 ; N=0:

(58)

� We can further assume


l_(u)

=1.

Now H =0 implies LG¡ 2MF=0 which becomes�

�+ v l�¡ 2 (
_ � l) l_

�
�
�¡

_ + v l_

�
� l
�
=0: (59)

2. Proposition 12.2.4 in the textbook.
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Expanding (59) into powers of v, we see that�¡
l_� l

�
� l�
�
v2+

�¡
l_� l

�
� 
�+ (
_ � l) � l�

�
v+
�
(
_ � l) � 
�¡ 2 (
_ � l)

¡
(
_ � l) � l_

��
=0: (60)

(60) must hold for all v. Consequently ¡
l_� l

�
� l� = 0; (61)¡

l_� l
�
� 
�+ (
_ � l) � l� = 0; (62)

(
_ � l) � 
�¡ 2 (
_ � l)
¡
(
_ � l) � l_

�
= 0: (63)

Now by (61) we conclude that l�(u) is a linear combination of l_ and l. Now

klk=1=) l?l_;


l_

=1=) l�?l_; (64)

therefore l� k l. In fact, di�erentiating l � l_= 0 we have l� � l=¡


l_

2=¡1. Therefore l�=¡l.

Now notice that
�
l; l_; N = l � l_

	
form an orthonormal basis. Thus we write 
_ =

� l+ � l_+ 
N . Taking derivative and using the facts that N is a constant vector3 as well as
l�=¡l, we have


�=
¡
�_ ¡ �

�
l+(�+ �_ ) l_+ 
_N: (65)

By (62) we have
¡
l_� l

�
� 
�=0 which means 
_ = 0 so 
= 
0 is a constant.

Finally we take span
�
l; l_
	
to be the x-y plane. Thus we have


(u)= (f(u); g(u); 
0u+ 
1) (66)

where 
0; 
1 are constants, and l(u)= (cosu; sin u; 0). Now there are two cases.

� 
0=0. Clearly � is part of a plane (recall that l also is in the x-y plane);

� 
0=/ 0. In this case (63) simpli�es to

g�cosu¡ f�sinu=2
¡
f_ cosu+ g_ sinu

�
: (67)

Now notice that we can always pick 
(u) such that 
_(u) � l(u) = 0. This gives
f_ cosu+ g_ sin u=0 and consequently

d
du

¡
g_ cos u¡ f_ sin u

�
=0=) g_ cosu¡ f_ sinu= c0 (68)

Putting together

f_ cos u+ g_ sinu = 0 (69)
¡f_ sin u+ g_ cosu = c0 (70)

we reach

f_ =¡c0 sin u; g_ = c0 cosu (71)

which means

f = c1+ c0 cosu; g= c2+ c0 sin u: (72)

3. N_ = l_� l_+ l� l�=0.
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So �nally we have

�(u; v)= (c1+(v+ c0) cosu; c2+(v+ c0) sin u; 
0u+ 
1) (73)

which is the same as

�(u; v)= (c1+ v cosu; c2+ v sinu; 
1+ 
0u); (74)

a helicoid. �

Remark 8. Note that the helicoid is not developable.

3. Developable surfaces (optional)
Recall that we have proved that the only developable surfaces are the plane, the (generalized)
cylinder, the (generalized) cone, and a class of surfaces called �tangent developables�. In the
proof we left one big gap: the claim that any developable surface must be ruled. Now we
�nally are able to �ll (half of) this gap.

In the following we assume S is a developable surface, that is a surface having local
isometries with the �at plane. Recall that a local isometry f : S1 7! S2 is characterized by
the fact that for every surface patch �1 for S1, if we denote by �2 := f � �1, then the �rst
fundamental forms are identical: E1=E2;F1=F2;G1=G2.

Lemma 9. S must have Gaussian curvature zero everywhere.

Proof. Will be proved in a later lecture. �

Definition 10. A surface S is said to be �at if its Gaussian curvature is zero everywhere.

Proposition 11. (Proposition 8.4.2 of the textbook) Let S be a �at surface with
the principal curvatures �1=/ �2 everywhere. Then S is a ruled surface.

Proof.

i. Pick �(u; v) such that the �rst and second fundamental forms are

Edu2+Gdv2; Ldu2+Ndv2: (75)

Exercise 3. Why can this be done?

ii. Since K = 0, there must hold LN= 0. Note that if both L;N= 0, then �1= �2= 0.
Therefore we can assume L=/ 0 or N=/ 0. We study the case L=/ 0 and leave the case
N=/ 0 as exercise. Note that if L=/ 0 then necessarily N=0.

The second fundamental form is now Ldu2.

iii. We have �
a11 a21
a12 a22

�
=

�
E 0
0 G

�¡1� L 0
0 0

�
=

 
L

E
0

0 0

!
(76)

which gives

Nu=¡E¡1L�u; Nv=0: (77)
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Note that this implies Nuv=Nvu=0.

iv. Let p0= �(u0; v0) be arbitrary. We will prove that 
(v) := �(u0; v) is a straight line.
We have


_ = �v; 
�=�vv: (78)

Now as N=0 we have �vv �N =0. On the other hand,

�vv ��u=Fv¡�uv ��v=(L¡1ENu)v ��v=L¡1ENuv ��v=0: (79)

Thus we see that 
_ k 
� which means 
 is a straight line. �
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