

# Math 348 Differential Geometry of Curves and Surfaces

Lecture 12 The Second Fundamental Form

Xinwei Yu

Oct. 19, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

#### Table of contents

- 1. Review
- 2. The Second Fundamental Form and Its Properties
- 3. Examples
- 4. Applications of  $\langle \cdot, \cdot \rangle_{p,S}$ .
- 5. Looking Back and Forward

Please do not hesitate to interrupt me if you have a question.

#### Review

#### How does a Surface Curve

- $\mathbb{L} = \sigma_{uu} \cdot N = -N_u \cdot \sigma_u$ ,  $\mathbb{M} = \sigma_{uv} \cdot N = -N_u \cdot \sigma_v = -N_v \cdot \sigma_u$ ,  $\mathbb{N} = \sigma_{vv} \cdot N = -N_v \cdot \sigma_v$ .
- Normal curvature and geodesic curvature.
  - $|\kappa_n(p, w)|^1$  is the smallest possible curvature at  $p \in S$  of curves passing p with its tangent at p parallel to  $w \in T_pS$ .
  - When ||w|| = 1,  $\kappa_n(p, w) = \mathbb{L}w_1^2 + 2\mathbb{M}w_1w_2 + \mathbb{N}w_2^2$ .
  - $\kappa N = \kappa_n N_S + \kappa_g (N_S \times T)$ ,  $\kappa^2 = \kappa_n^2 + \kappa_g^2$ .
- Geodesic equations.

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mathbb{E}\dot{u} + \mathbb{F}\dot{v}) = \frac{1}{2}(\mathbb{E}_u\dot{u}^2 + 2\mathbb{F}_u\dot{u}\dot{v} + \mathbb{G}_u\dot{v}^2) \tag{1}$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mathbb{F}\dot{u} + \mathbb{G}\dot{v}) = \frac{1}{2}(\mathbb{E}_{v}\dot{u}^{2} + 2\mathbb{F}_{v}\dot{u}\dot{v} + \mathbb{G}_{v}\dot{v}^{2})$$
(2)

when s is the arc length parameter of the curve  $\gamma(s) = \sigma(u(s), v(s))$ .

<sup>&</sup>lt;sup>1</sup>Usually simply  $\kappa_n$ , also note that  $\kappa_n$  could be negative.

The Second Fundamental Form

and Its Properties

#### The second fundamental form

$$S: \sigma(u,v). \ p_0 = \sigma(u_0,v_0) \in S.$$

• **Definition.** The second fundamental form of S at  $p_0$  is a bilinear form on  $T_{p_0}S$ :

$$\langle\langle v,w\rangle\rangle_{p,S} = \mathbb{L}v_1w_1 + \mathbb{M}(v_1w_2 + v_2w_1) + \mathbb{N}v_2w_2.$$

Here  $v = v_1 \sigma_u + v_2 \sigma_v$ ,  $w = w_1 \sigma_u + w_2 \sigma_v$ , and  $\mathbb{L}, \mathbb{M}, \mathbb{N}$  are calculated at  $(u_0, v_0)$ .

• Classical notation.

$$\mathbb{L} du^2 + 2\mathbb{M} du dv + \mathbb{N} dv^2.$$

#### The Weingarten map.

• The Weingarten map.  $W_{p,S}: T_pS \mapsto T_pS$ .

$$W_{p,S} := -D_p \mathcal{G}.$$

Beware of the minus sign!

• Calculation of the Weingarten map.

$$W_{p,S}(a\sigma_u + b\sigma_v) = -aN_u - bN_v.$$

Matrix representation of the Weingarten map.

$$W_{p,S}(a\sigma_u + b\sigma_v) = \tilde{a}\sigma_u + \tilde{b}\sigma_v,$$

where

$$\begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

with

$$\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} = \begin{pmatrix} \mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G} \end{pmatrix}^{-1} \begin{pmatrix} \mathbb{L} & \mathbb{M} \\ \mathbb{M} & \mathbb{N} \end{pmatrix}.$$

4

### Relations between $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle$ .

 $v, w \in T_pS$ : Arbitrary tangent vectors.

There holds

$$\langle\langle v, w \rangle\rangle_{p,S} = \langle \mathcal{W}_{p,S}(v), w \rangle_{p,S} = \langle v, \mathcal{W}_{p,S}(w) \rangle_{p,S}.$$

#### Proof.

- 1. We omit the subscripts p, S;
- 2. Suffices to prove for  $v = \sigma_u, \sigma_v, w = \sigma_u, \sigma_v$ ;
- 3. Prove in detail the case  $v = \sigma_u, w = \sigma_v$ . Calculate

$$\langle \mathcal{W}(\sigma_u), \sigma_v \rangle = \langle -N_u, \sigma_v \rangle 
= a_{11} \langle \sigma_u, \sigma_v \rangle + a_{12} \langle \sigma_v, \sigma_v \rangle 
= a_{11} \mathbb{F} + a_{12} \mathbb{G} 
= \mathbb{M} = \langle \langle v, w \rangle \rangle.$$

4. Proofs for other cases are similar.

### **Examples**

#### Unit sphere.

Keep in mind: Two formulas for each of  $\mathbb{L}, \mathbb{N}, \mathbb{N}.$ 

#### **Example**

Consider the unit sphere parametrized as

1. 
$$\sigma_1(u, v) = (u, v, \sqrt{1 - u^2 - v^2});$$

2. 
$$\sigma_2(u, v) = (\cos u \cos v, \cos u \sin v, \sin u)$$
.

We can easily calculate

$$\mathbb{L}_1 = \frac{v^2 - 1}{1 - u^2 - v^2}, \quad \mathbb{M}_1 = \frac{-uv}{1 - u^2 - v^2}, \quad \mathbb{N}_1 = \frac{u^2 - 1}{1 - u^2 - v^2}.$$

and

$$\mathbb{L}_2 = -1, \qquad \mathbb{M}_2 = 0, \qquad \mathbb{N}_2 = -\cos^2 u.$$

6

#### Other surfaces.

Keep in mind: Two formulas for each of  $\mathbb{L}$ ,  $\mathbb{N}$ ,  $\mathbb{N}$ .

#### **Example**

$$\sigma(u, v) = (u, v, u^2 + v^2)$$
. We easily calculate

$$\mathbb{L} = \frac{2}{\sqrt{1 + 4u^2 + 4v^2}}, \qquad \mathbb{M} = 0, \qquad \mathbb{N} = \frac{2}{\sqrt{1 + 4u^2 + 4v^2}}.$$

#### **Example**

Ruled surface:  $\sigma(u, v) = \gamma(u) + vI(u)$ . We see that

$$\mathbb{L} = \|\sigma_{u} \times \sigma_{v}\|^{-1} (\ddot{\gamma} + v\ddot{l}) \cdot (\dot{\gamma} \times l + v\dot{l} \times l),$$

$$\mathbb{M} = \|\sigma_{u} \times \sigma_{v}\|^{-1} \dot{l} \cdot (\dot{\gamma} \times l),$$

$$\mathbb{N} = 0.$$

7

## Applications of $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{p,S}$

#### **Plane**

$$\langle\!\langle\cdot,\cdot\rangle\!\rangle_{p,S}=0$$
 at every  $p\in\mathcal{S}\Rightarrow$  (part of )plane.

#### Proof.

- 1. Pick any surface patch  $\sigma$  for S;
- 2.  $N_u \cdot \sigma_u = N_u \cdot \sigma_v = 0$ ;
- 3.  $N_u \cdot N = 0$ ;
- 4.  $N_u = 0$ ;
- 5. Similarly  $N_{\nu} = 0$ ;
- 6. N is a constant vector  $\Rightarrow$  S is (part of )a plane.

#### Sphere.

$$\langle\!\langle\cdot,\cdot\rangle\!\rangle_{p,S}=\lambda(p)\langle\cdot,\cdot\rangle_{p,S}$$
 at every  $p\in S\Rightarrow$  (part of) a sphere.

#### Proof.

- $1. \ \langle\!\langle \cdot,\cdot\rangle\!\rangle_{\textit{p,S}} = \lambda(\textit{p})\langle \cdot,\cdot\rangle_{\textit{p,S}} \Rightarrow -\textit{N}_{\textit{u}} = \lambda(\textit{u},\textit{v})\sigma_{\textit{u}}, -\textit{N}_{\textit{v}} = \lambda(\textit{u},\textit{v})\sigma_{\textit{v}};$
- 2. Differentiate:

$$-N_{uv} = \lambda_v \sigma_u + \lambda \sigma_{uv}, \qquad -N_{vu} = \lambda_u \sigma_v + \lambda \sigma_{vu}.$$

- 3.  $\lambda_u \sigma_v = \lambda_v \sigma_u \Rightarrow \lambda_u = \lambda_v = 0$ . So  $\lambda(u, v) = r$  is a constant;
- 4.  $\sigma + \lambda N$  is a constant.

**Looking Back and Forward** 

#### Summary

- Definitions.
  - 1. Second fundamental form.

$$\langle\langle v,w\rangle\rangle_{p,S} = \mathbb{L}v_1w_1 + \mathbb{M}(v_1w_2 + v_2w_1) + \mathbb{N}v_2w_2.$$

- 2. The Weingarten map.  $W_{p,S} := -D_p \mathcal{G}$  $W_{p,S}(a\sigma_u + b\sigma_v) = -aN_u - bN_v$ .
- Properties.
  - 1. Relation between the first and second fundamental forms.

$$\langle\langle v,w\rangle\rangle_{p,S} = \langle \mathcal{W}_{p,S}(v),w\rangle_{p,S} = \langle v,\mathcal{W}_{p,S}(w)\rangle_{p,S}.$$

- Formulas.
  - 1. Matrix representation of the Weingarten map.

$$\mathcal{W}_{p,S}(a\sigma_u + b\sigma_v) = \tilde{a}\sigma_u + \tilde{b}\sigma_v, \quad \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

with

$$\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} = \begin{pmatrix} \mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G} \end{pmatrix}^{-1} \begin{pmatrix} \mathbb{L} & \mathbb{M} \\ \mathbb{M} & \mathbb{N} \end{pmatrix}.$$

#### See you next Tuesday!

Curvatures for surfaces.

- 1. Curvatures: Gaussian, mean, principal;
- 2. Developable surfaces;
- 3. Minimal surfaces.