Math 348 Fall 2017

LECTURES 12: THE SECOND FUNDAMENTAL FORM

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we introduce the second fundamental form, its properties,
and applications.
The required textbook sections are §7.1-7.3.
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1. The second fundamental form

DEFINITION 1. (THE SECOND FUNDAMENTAL FORM) Let S be a surface and po€ S. Let o
be a surface patch of S covering py: po= o(ug, vo). Then the second fundamental form of S
at po, denoted ((-,))py.s (with p, S omitted when no confusion may arise), is a bilinear form

on T,,S defined through
((v,W)) py.s =Lvgwy + M (v1 we + v wq) + N vy wo. (1)

where v =y oy,(ug, Vo) + V2 Ty(Up, Vo) and w =wy oy, (ug, Vo) + we oy (U, Vo), and

L(ug, v0) = ouu(to, vo) - N(ug, vo) = —0y - Ny, (2)
M(UO, ’Uo) = O'uv(UQ,’Uo) 'N(Uo, ’Uo):—O'u'NU:—O'U'Nu, (3)
N(ug, vo) = 0pu(to, vo) - N(ug, vg) = =0y N,. (4)

Remark 2. An alternative notation is L(uo, vo) du? + 2 M(ug, vo) du dv + N(ug, vo) dv?.

Remark 3. Let v(s) =o(u(s), v(s)) where s is the arc length parameter. If p=(s¢), we
clearly have

kn =1L () + 2 Mt + N (0)* = ((7, 7))r(s0).5 (5)

We can further prove the following general formula for w € T,,S

<<w0> w0>>10075‘ (6)

/{n(pOa wO) - <'LUO, w0>p075

As a consequence, when ~(t) is not parametrized by arc length, we have

vy T s Li(w)?*+2Mad + N (9)?
fnlpo 3t0)) == oy T E a2 F a0+ G (o) (7)

2. The Weingarten map

DEFINITION 4. (DEFINITION 7.2.1 IN THE TEXTBOOK) We define the Weingarten map

WPO,S = _Dpog (8>

where G is the Gauss map.
Note the minus sign here.

Example 5. We try to calculate W, s(c,,) and W, s(0,,) for the following surface patches.
It is clear that

WP(LS(O-U) = _Nua Wpo,S(Uv) = _Nv- (9)

a) S is the plane o(u,v) = (u,v,3u+2v).
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In this case we have
o.=(1,0,3), o,=(0,1,2)

which give
Ou X Oy 1 )

N(u,v)=G(o(u,v))= Tow % o] = i (—=3,—2,1).

We see that W(o,) =W(a,) =0.

b) S is the cylinder o(u,v) = (cosu,sinu,v).
In this case we have

0u=(—sinu, cosu,0), o,=(0,0,1)
and
O-U X Uv .
N(u,v)=7+———=/(cosu,sinu,0).
(u;v) Toux ool ( )
We have

N, = (—sinu,cosu,0) =0y, N,=(0,0,0).

Consequently we have
W(oy) = —0u, W(o,)=0.

c) S is the unit sphere o(u,v) = (u,v, V1 —u?—v?).
We have
—u —v
ou={10—% ) s =(01,—Y
( \/1—u2—v2) < m>
N(u,v)=(u,v,V1—u*—v?)=0(u,v).

and

Consequently
W(ou) =—Ny, W(o,) =—N,.
d) S is the hyperbolic paraboloid o(u,v)= (u,v,uv) with py=(0,0,0).
We have
o.=(1,0,v), o,=1(0,1,u)

and

N(u v):( —v —u 1 >
’ VIF@+ o2 Vit + 02 Vit w2+ o2

Now we calculate

B B —uv 1+ 02 u
Wlew =~ = ( (T+u2+ 0232 (1+u2+0v2)*2" (1412 +02)%/?
and
1+ u? —uv v
W(o,)=—N,= : ,
() ((1+u2+v2)3/2 (14 u2+02)32" (14 u2+v2)3/2

)

(10)

(11)

(13)

(14)

(15)

(17)

(18)

(19)

(20)

(21)

(22)
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We see that
uv 142
Wiow =~ (1+u2+02)%?2 ot (I+uzt 022" (23)
and
2
Wio) 1+u uv (24)

= Ou— o
(1+u2~|—v2)3/2 (1+u2+v2)3/2

We have seen that W(o,) =—N,, W(o,) = —N,. As W is linear, for a,b € R we have
W(aoy,+bo,)=—aN,—bN,. (25)

Therefore to understand WV we need to understand N,, IN,. The crucial observation is the
following.

Nuy NyLN = —Ny=a110y+ 120, —N, = 210y + 220
THEOREM 6. We have
a1 a1 _ E F -1 L M (26)
Q12 Qg2 F G M N
where IE du? + 2 F du dv + G dv? is the first fundamental form of S at py, and I, M, N are
defined in (}-06).

Proof. We notice that as o,- N =0, N =0, there holds
L=0yy - N=(0uN)y—0u-Ny=—0,- N, (27)

and similarly

M=—-0,-N,=—0,-N,, N=—0,-N, (28)

This leads to
1Ea11+IFa12 = au-(a110u+a120v):—0u-Nu:L, (29)
Fa1+Gae = oy (a1104+a120,) =—0,- Ny=M. (30)

Consequently
(m)-(2 &) (3) @
Similarly we have ( “z; ):( r ) ! ) and the conclusion follows. O

LEMMA 7. Letv,w€&T,S. Then
(v, w>>p,5 = <Wp,8(v)> w)p,S = (v, Wp,S(w»p,S- (32)

Proof. Since ((-,*))p.s, Wp.s(:),)p.s, and (-, W, s(+)),,s are all bilinear, it suffices to prove
the following cases: v=0,,wW=0,; V=w=0,; V=w=0,; V=0,,w =0,. We prove the first
one and leave the other three as exercises.
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We calculate
(s 00))p,s =M.

On the other hand, W, s(0,,) = —N, = a11 0, + a120, where
a1 . E F -1 L
a12 N F G M )

<Wp,8(0u>70v>p,8 = all<Uuaav>p,5+a12<avaav>p,5
= CL111F—|—CL12G

- (FE) (a)
~ (0 1)(11%4):11\4.

Consequently

Note that we have used

(22)(2E) ()= e (E8) 0

The proof that (oy, W), 5(04))p,s =M is similar.

3. Examples

Example 8. Consider the unit sphere (u,v,v1—u?—v?). We calculate

—u —v
ou=\1,0, —/—m———— |, oy=10,1, —/———
( \/1—u2—v2) < \/1—u2—v2>

which gives

Ou X Oy
N(u,v)—HauxUUH—(u,v, 1—u>—0%)=0(u,v)
Therefore

v2—1

L(u,v) = —o, Ny [y—
—Uuv

M(u,v) = —oy-N, [y —
w?—1

N(u,v) = —o, N, e

(33)

(34)

(37)

(38)
(39)

(40)

(41)

Example 9. Consider the unit sphere in spherical coordinates (cosu cosv,cosusinv, sinu).

We calculate

0. = (—sinwucosv, —sinusinv, cosu), 0y, = (—cosusinv, cosucosv,0)

which gives

N(u,v)=(cosucosv,cosusinv,sinu).

(42)

(43)
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Therefore

4

) = L, (44)
) =0, (45)
) = —cos?u. (46)

zgE
“2 “: “2
S

4

Example 10. Consider the surface patch o(u,v) = (u,v,u?+v?). We have

Uu:(1a072u)a O-U:(()? 1’2U)7 (47)
Uuu:UUv:(07072)7 qu:(07070>7 (48>
and
lowx ol VI+4uZ+402

Thus we have

L=y, N = 2 , (50)
V1+4u2+402
M=0,, N =0, (51)
2

N=o0y, - N= (52)

V1itduz+402

So the second fundamental form is
2
V1i+4u2+402

Exercise 1. Does this mean at any point p € S, the normal curvature k., is a constant in every direction?

(du®+ dv?). (53)

Example 11. Consider a ruled surface o(u,v)=y(u)+vl(u) where [(u) is of unit length.
We calculate
ou=(u) +vi(u), oo =1(u). (54)
This gives ‘
Ou X Oy y(u) x l(u) +vl(u) x I(u)

Nlu,v)= lowx ol ™ ([ x i) + vi(u) x 1(u)]| )

We further calculate

Ouu="w)+vl(u), ow=Iu), 0u=0. (56)

Therefore if we set A= |0y, X 7, ||.

L(u,v) = 0uu N=A(F+01) - (F(u) x 1(u) +vi(u) x (), (57)
M(u,v) = 0yy- N=A"11-(7x1), (58)
N(u,v) = 04 N =0. (59)

Recalling our discussion on developable surfaces, we see that a ruled surface is developable
if and only if M =0.
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4. Applications of the second fundamental form

PROPOSITION 12. Let S be a surface whose second fundamental form is identically zero.
Then S is part of a plane.

Proof. Let o be a surface patch for S. Then by assumption we have N,-o,=N,-0,=0. As
N is the unit normal, naturally N,- N =0. Consequently N, =0 as {0y, 0,, N} form a basis
of R3. Similarly N,=0. Thus N is a constant vector and therefore o is part of a plane. [

PROPOSITION 13. Let S be a suface whose second fundamental form at every p € S is a non-
zero scalar multiple of its first fundamental form at p. Then S is part of a sphere.

Exercise 2. Prove that if S is part of a sphere, then its second fundamental form is a non-zero scalar
multiple of its first fundamental form.

Proof. Let o(u,v) be a surface patch for S. Then there holds
Lu,v) =c(w,0) B(w,v),  M(u,0)=c(u,0) Flu,v),  N(u,0) =c(u,v) Glu,0)  (60)

for every (u,v). This leads to

(Fa) (3%)=wao?) o

As a consequence, we have
N.+ c(u,v) 0, =0, N, +c(u,v)o,=0 (62)
at every (u,v). Taking v, u derivatives of the two equations respectively, we have
Nyv+coou+cou=0= Ny, Cu0yp+ COpy=—> C, Oy =Cy 0y (63)

As oy, 0, form a basis of 7,5, there must hold ¢, =¢, =0, that is ¢(u,v) =c is a constant.
Now (62) becomes

(N+co)y=(N+co),=0= N +co=rg (64)
is a constant. In other words, we have
o+cIN=clrg (65)

is a constant which means ¢ is part of the sphere centered at ¢~! ry and with radius |c|™!. O
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