Math 348 Fall 2017

LECTURES 11: HOw DOES A SURFACE CURVE

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we study how to measure the curving of a surface patch.
The required textbook sections are §7.1-7.3.
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Differential Geometry of Curves & Surfaces

Let S be a surface and let pg € S. Let 0: U — IR? be a surface patch covering py. Let
o (ug,v9) = po. In the following we study three ways to measure how the surface curves at po.

1. Distance to the tangent plane

We measure the curving of the surface by calculating how quickly the surface curves
away from its tangent plane at p,. Note that the tangent plane is the best flat
approximation of the surface that passes py.

Recall that the equation for the tangent plane in R? is given by
(= po) - N(po) =0. (1)

Let p=o(u,v) € S be a point close to py. Then we have its distance to the tangent
plane to be

d(u,v) =[(o(u,v) = o(uo, vo)) - N (o (uo, v0))l- (2)
We calculate d(u,v) through Taylor expansion:
(o(u,v) — o (ug,v0)) - N(o(ug,v9)) = [ow(u—1up)+0,(v—10)] N
+[% Tuu (U — ug)* + 0yy (u — ug) (v — vg) +

%gvv (U — ’Uo)Z} -N + R(U, U) N
= a0 23 ) o= )
N (0 — 0o)?] + R(u,v) - N ®)
) R(u,v
where hm(u,v)—>(uo,vo) (u—u‘o)2(+(2'|— v0)? =0

Thus we see that the curving of the surface at py can be characterized by three
numbers:

IL(U(], ’Uo) = auu(uo, ’Uo) . N(UO, Uo), (4)
M(ug, v9) = 0uu(tg, vo) - N (1o, vo), (5)
N(ug,vg) = oyu(tg, vo) - N (g, vo). (6)

Exercise 1. Would we obtain the same numbers if we use N(o(u, v)) instead of N (o (ug,vo))
in (2)?

2. The turning of the unit normal

Oy X Oy

Recall that the unit normal vector N(p):=

llow x o]

The crucial observation is the following.
Nu7 NvJ-N — _Nu:allau+a12av7 _Nv =210y + A220.

Calculating ayy, ..., ax.
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THEOREM 1. We have

a1 an \ _(EF\'/ L M 7)
a12 292 - F G M NN
where Edu?+2F dudv + G dv? is the first fundamental form of S at py, and 1L, M,
N are defined in (4-6).
Proof. We notice that as o,- N =0, N =0, there holds
L=0y,,-N=(0y,-N)y—0y, - Ny=—0, N, (8)
and similarly
M=—-0,-N,=—0,-N,, N=—0,-

Z
—~
Ne
~—

This leads to

Eaj1+Fais = oy (a1104+a120,) =—0,- Ny=1L, (10)
IF(Z11+G(112 = O'U'((l110'u+(1120'v):—0'v'Nu:M. (11)
Consequently
a1 . E F -1 L
(o)-(5¢) (&) ®
Similarly we have ( Zz; ) = ( IIE g )_1 ( % ) and the conclusion follows. 0J

3. How much are the curves in the surface forced to curve?

Let y(t) := o(u(t), v(t)) be a curve in S with u(ty) = ug, v(to) = vo. Thus it passes
po=0(up, v9). We try to understand the curving of S at py through the curvature of
(1) at 7(to).

To make this idea work we need to first qualitatively understand how are the curving
of S at pg and the curvature of ~y(¢) related.

Example 2. We consider the following paradigm situations.

o Let S be the plane and py € S. Clearly a curve passing py can have any
curvature.

o Let S be the cylinder and py€ S. Again a curve passing po can have arbitrary
ko =0 as its curvature there.

o Let S be the unit sphere. Intuitively we see that a curve passing pg€ S could
have any curvature >1 but not <1.

Exercise 2. Prove this.

From these examples it seems that the relations between the curvature of ~(t) and
the curving S is very loose. However, this relation becomes much more precise when
we consider not all possible curvatures, but the minimal one:

Given any unit vector wy € T}, S, let Kmin(wp) be the minimal curva-
ture of all possible curvatures of the curves passing py and are tangent
to wp at po.
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Now we see that ki, very precisely reflects the curving of the surface.
o For S the flat plane: kKyn(wo) =0 for all wy;

o For S the cylinder: Kpin(wo) =0 when wy=(0,0,1) and Kymn(wo) =1 when wy is
the horizontal tangent, and Kpim(wo) lies between 0 and 1 for other directions.

o For S the sphere: kpin(wy) =1 for all wy.

e What is mmm(wo)?
First we re-parametrize by arc length v(s) =o(u(s),v(s)). We calculate

F(s) =1u(s) ou+v(s) 0y, (13)

Y(s) =1i(s) o0+ (8) 0y + 1U(8)? Ouu +21(8) V() Ty + 0(8)? O (14)

Let T', N be the unit tangent and normal of the curve v(s) at y(sg) = po, and denote
by Ng:= Ha“ﬂ the unit normal at po= o (ug, vp). As we require v(s) to be tangent

ou X oyl

to a fixed direction, %(sg), v(so) are fixed. Therefore we further denote
uy :=1u(so), vy := () (15)
to emphasize this point. Thus we have
Y(s0) = ii(S0) T+ §(50) Op + UF T + 2 U1 V1 Ty + V7 T (16)
Next observe that N || 4(so) LT, T LNg. We see that
k= |5(s0) - Ns| = [Luf+2Mu; v, + Noi| (17)

thanks to the fact that o,- Ng=0,- Ng=0.
As 0,, 0, form a basis of T},,59, it is always possible to find i(sp), #(so) such that
F(s0) || Ns. Consequently, we conclude (when ||uy o, +v1 04| =1)

Kmin(U1 0y + 01 0,) = [Lud + 2 Muy v, + Nog|. (18)

Remark 3. An arc-length parametrized curve v(s) = o(u(s), v(s)) satisfy x(s) =
|kmin(T'(s))| at every s if and only if u(s), v(s) satisfy the following equations
(Ei+TFo) = = (B, (0)2+2F, 00+ Gy ()?), (19)

(E, (4)*+2TF,u0+ G, (v)?). (20)

| — | =

Exercise 3. Prove this.

e Normal and geodesic curvatures.

DEFINITION 4. Let v(t) := o(u(t), v(t)) be a curve in S passing po = o(u(ty), v(to)).
Denote by T, N the unit tangent direction and unit normal direction of (t) at po,
and by Ng the unit normal direction of S at py. Denote by k the curvature of y(t) at
po. Then

KN =k, Ng+£r,(NgxT). (21)
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We call k,, the normal curvature and r, the geodesic curvature of ~(t) at po.

e Properties.

e}

o

There holds

K% =KZ+ Ko (22)

|kn| is the smallest possible curvature for all curves in S passing py with (%)
parallel to the fixed direction wy € T},(.5).

Let wo € T},,S be fixed. Let v(t) be the intersection of S with the plane passing
po spanned by wy and Ng'. Then the curvature of () at pg is |kn|.

The curvature of y(t) at p# pp may not equal to |k,(p)| anymore.

Exercise 4. Find an example illustrating this. (One possibility is cylinder).

In general, we have
Kpn=FKCOSV, Kge==Eksiny (23)
where 9 is the angle between Ng and N.

In particular, if y(t) is the intersection of S with a plane passing the line
through pg in the direction w, then the curvature of v(t) at py is given by

_ |rn]

cos 1

where 1 is the angle between the plane and the unit normal Ng to the surface
at po.

K (24)

1. Such () is called a “normal section”
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