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Please do not hesitate to interrupt me if you have a question.
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Review



Definition and Formulas for the First Fundamental Form

E = σu · σu,F = σu · σv ,G = σv · σv .

• Intuition.

Different ”scale” at different points on the map.

• Definition. At each p ∈ S , a bilinear form on TpS .

v ,w ∈ TpS : v = v1σu + v2σv ,w = w1σu + w2σv .

〈v ,w〉p,S = Ev1w1 + F(v1w2 + v2w1) + Gv2w2

• Measurements.

1. Arc length: L =
∫ b

a
〈γ̇, γ̇〉1/2p,Sdt;

2. Angle: cos∠(v ,w) =
〈v,w〉p,S

〈v,v〉1/2
p,S

〈w,w〉1/2
p,S

;

3. Area: A =
∫
U

√
EG− F2dudv .
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Properties of The First

Fundamental Form



Change of variables

σ : U 7→ S with E,F,G; Change of variables: (u, v)→ (ũ, ṽ). Ẽ, F̃, G̃?

• Intuition.

How to put ”scale” onto a second map?

• Formulas.

u = U(ũ, ṽ), v = V (ũ, ṽ). Then substitute du = ∂U
∂ũ dũ + ∂U

∂ṽ dṽ and

dv = ∂V
∂ũ dũ + ∂V

∂ṽ dṽ into Edu2 + 2Fdudv + Gdv2 to obtain Ẽ, F̃, G̃.

Example

du2 + dv2 under polar coordinates u = r cos θ, v = r sin θ can be

obtained as follows.

du = cos θdr − r sin θdθ, dv = sin θdr + r cos θdθ.

This gives

du2 + dv2 = dr2 + r2dθ2.
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Isometry

f : S1 7→ S2: Arc length of γ equals that of f (γ) for any γ.

• How to check.

f : S1 7→ S2 is an isometry ⇔ their first fundamental forms coincide,

in the sense that for any surface patch σ1 for S1, if we let

σ2 = f ◦ σ1, then E1 = E2, F1 = F2, G1 = G2.

Example

Let S1 be the plane region {(x , y , z) | z = 0, y ∈ (−π, π)}, let S2 be

cylinder x2 + y2 = 1. Then f (x , y , z) = (cos y , sin y , x) is an isometry

between them.
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Conformal mapping

f : S1 7→ S2: Angle between γ, γ̃ preserved.

• How to check.

f : S1 7→ S2 is conformal ⇔ their first fundamental forms are

proportional, that is for any surface patch σ1 for S1, if we let

σ2 = f ◦ σ1, then there is a function λ(u, v) such that

E2 = λE1,F2 = λF1,G2 = λG1.

Example

f (x , y , 0) =
(

2x
1+x2+y2 ,

2y
1+x2+y2 ,

x2+y2−1
1+x2+y2

)
is conformal between the plane

z = 0 and the unit sphere.

Theorem

Let S1,S2 be arbitrary surfaces. Then there is a conformal mapping

between them (locally).

Proof.

See lecture notes. 5



Equiareal mapping

f : S1 7→ S2: Area of Ω ⊆ S1 equals the area of f (Ω).

• How to check.

f : S1 7→ S2 is equiareal ⇔ for any surface patch σ1 of S1, if we let

σ2 = f ◦ σ1, then

E1G1 − F2
1 = E2G2 − F2

2.

Example

S1: The part −1 < z < 1 of the cylinder with the unit circle as its base;

S2: unit sphere. Consider f (x , y , z) = (
√

1− z2x ,
√

1− z2y , z). Then

simple calculation shows that f is equiareal.

Existence of equiareal mapping between a plane region and a surface

patch σ ⇔ Existence of vector functions U,V such that the first

fundamental form for σ̃(u, v) := σ(U(u, v),V (u, v)) satisfies

ẼG̃− F̃2 = 1. This gives the following partial differential equation

det J2 = 1
EG−F2 , where J is the Jacobian matrix.
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Relations between isometric, conformal, equiareal mappings

f : S1 7→ S2.

• Isometry ⇒ Conformal and Equiareal.

• Conformal + Equiareal ⇒ Isometric.
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Developable Surfaces



Cylinder, Cone, Tangent developable

• Generalized cylinder. σ(u, v) = γ(u) + va, ‖a‖ = 1.

The first fundamental form is du2 + dv2. We see that it is isometric

to the plane.

• Generalized cone. σ(u, v) = vγ(u), ‖γ‖ = 1.

The first fundamental form is v2du2 + dv2. We see that it is

isometric to the plane.

• Tangent developable. σ(u, v) = γ(u) + v γ̇(u).

• u is arc length for γ.

• E = 1 + v 2κ2, F = 1, G = 1.

• Isometric to the plane.
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No other surfaces are developable

Theorem

Any sufficiently small open subset of a surface locally isometric to a plane

is an open subset of a plane, a generalized cylinder, a generalized cone,

or a tangent developable.

Proof.

1. S must be a ”ruled surface”: σ(u, v) = γ(u) + vl(u)1. Can assume

‖l‖ = 1.

2. A ruled surface is developable ⇔ N(u0, v) is independent of v .

3. A ruled surface is developable ⇔ (γ̇ × l) · l̇ = 0.

4. γ̇ · (l × l̇) = 0. Two cases.

4.1 l̇ × l = 0. Then l(u) is constant. Generalized cylinder.

4.2 γ̇ = a(u)l + b(u)l̇ . Let β(u) = γ(u)− b(u)l(u). Calculate

β̇ = (a− ḃ)l . Thus either l ‖ β̇, which gives tangent developable, or

β̇ = 0, which gives generalized cone.

1Will be proved in later lectures
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Looking Back and Forward



Summary

Required: §6.1; Optional: §6.2 – 6.5

• Definitions.

• Isometry: Preserves arc length.

E1 = E2, F1 = F2, G1 = G2.

• Conformal: Preserves angle.

E1 = λE2, F1 = λF2, G1 = λG2.

• Equiareal: Preserves area.

E1G1 − F2
1 = E2G2 − F2

2.
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See you next Tuesday!

The second fundamental form 〈〈·, ·〉〉.

1. Measuring curving of a surface.

2. Another bilinear form Ldu2 + 2Mdudv + Ndv2.
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