

Math 348 Differential Geometry of Curves and Surfaces

Lecture 10 Applications of The First Fundamental Form

Xinwei Yu

Oct. 12, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

- 1. Review
- 2. Properties of The First Fundamental Form
- 3. Developable Surfaces
- 4. Looking Back and Forward

Please do not hesitate to interrupt me if you have a question.

Review

$$\mathbb{E} = \sigma_u \cdot \sigma_u, \mathbb{F} = \sigma_u \cdot \sigma_v, \mathbb{G} = \sigma_v \cdot \sigma_v.$$

• Intuition.

Different "scale" at different points on the map.

• **Definition.** At each $p \in S$, a bilinear form on T_pS .

$$v, w \in T_p S: v = v_1 \sigma_u + v_2 \sigma_v, w = w_1 \sigma_u + w_2 \sigma_v.$$

$$\langle v, w \rangle_{p,S} = \mathbb{E} v_1 w_1 + \mathbb{F} (v_1 w_2 + v_2 w_1) + \mathbb{G} v_2 w_2$$

• Measurements.

1. Arc length:
$$L = \int_{a}^{b} \langle \dot{\gamma}, \dot{\gamma} \rangle_{p,S}^{1/2} dt;$$

2. Angle: $\cos \angle (v, w) = \frac{\langle v, w \rangle_{p,S}}{\langle v, v \rangle_{p,S}^{1/2} \langle w, w \rangle_{p,S}^{1/2}};$
3. Area: $A = \int_{U} \sqrt{\mathbb{E}\mathbb{G} - \mathbb{F}^{2}} du dv.$

Properties of The First Fundamental Form

 $\sigma: U \mapsto S \text{ with } \mathbb{E}, \mathbb{F}, \mathbb{G}; \text{ Change of variables: } (u, v) \rightarrow (\tilde{u}, \tilde{v}). \quad \tilde{\mathbb{E}}, \tilde{\mathbb{F}}, \tilde{\mathbb{G}}?$

• Intuition.

How to put "scale" onto a second map?

• Formulas.

$$\begin{split} u &= U(\tilde{u},\tilde{v}), v = V(\tilde{u},\tilde{v}). \text{ Then substitute } \mathrm{d}u = \frac{\partial U}{\partial \tilde{u}} \mathrm{d}\tilde{u} + \frac{\partial U}{\partial \tilde{v}} \mathrm{d}\tilde{v} \text{ and} \\ \mathrm{d}v &= \frac{\partial V}{\partial \tilde{u}} \mathrm{d}\tilde{u} + \frac{\partial V}{\partial \tilde{v}} \mathrm{d}\tilde{v} \text{ into } \mathbb{E} \mathrm{d}u^2 + 2\mathbb{F} \mathrm{d}u \mathrm{d}v + \mathbb{G} \mathrm{d}v^2 \text{ to obtain } \tilde{\mathbb{E}}, \tilde{\mathbb{F}}, \tilde{\mathbb{G}}. \end{split}$$

Example

 $du^2 + dv^2$ under polar coordinates $u = r \cos \theta$, $v = r \sin \theta$ can be obtained as follows.

 $\mathrm{d} u = \cos \theta \mathrm{d} r - r \sin \theta \mathrm{d} \theta, \qquad \mathrm{d} v = \sin \theta \mathrm{d} r + r \cos \theta \mathrm{d} \theta.$

This gives

$$\mathrm{d} u^2 + \mathrm{d} v^2 = \mathrm{d} r^2 + r^2 \mathrm{d} \theta^2.$$

 $f: S_1 \mapsto S_2$: Arc length of γ equals that of $f(\gamma)$ for any γ .

• How to check.

 $f: S_1 \mapsto S_2$ is an isometry \Leftrightarrow their first fundamental forms coincide, in the sense that for any surface patch σ_1 for S_1 , if we let $\sigma_2 = f \circ \sigma_1$, then $\mathbb{E}_1 = \mathbb{E}_2$, $\mathbb{F}_1 = \mathbb{F}_2$, $\mathbb{G}_1 = \mathbb{G}_2$.

Example

Let S_1 be the plane region $\{(x, y, z) \mid z = 0, y \in (-\pi, \pi)\}$, let S_2 be cylinder $x^2 + y^2 = 1$. Then $f(x, y, z) = (\cos y, \sin y, x)$ is an isometry between them.

 $f: S_1 \mapsto S_2$: Angle between $\gamma, \tilde{\gamma}$ preserved.

• How to check.

 $f: S_1 \mapsto S_2$ is conformal \Leftrightarrow their first fundamental forms are proportional, that is for any surface patch σ_1 for S_1 , if we let $\sigma_2 = f \circ \sigma_1$, then there is a function $\lambda(u, v)$ such that

$$\mathbb{E}_2 = \lambda \mathbb{E}_1, \mathbb{F}_2 = \lambda \mathbb{F}_1, \mathbb{G}_2 = \lambda \mathbb{G}_1.$$

Example

 $f(x, y, 0) = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{x^2+y^2-1}{1+x^2+y^2}\right)$ is conformal between the plane z = 0 and the unit sphere.

Theorem

Let S_1, S_2 be arbitrary surfaces. Then there is a conformal mapping between them (locally).

Proof.

See lecture notes.

Equiareal mapping

 $f: S_1 \mapsto S_2$: Area of $\Omega \subseteq S_1$ equals the area of $f(\Omega)$.

• How to check.

 $f: S_1 \mapsto S_2$ is equiareal \Leftrightarrow for any surface patch σ_1 of S_1 , if we let $\sigma_2 = f \circ \sigma_1$, then

$$\mathbb{E}_1\mathbb{G}_1 - \mathbb{F}_1^2 = \mathbb{E}_2\mathbb{G}_2 - \mathbb{F}_2^2.$$

Example

 S_1 : The part -1 < z < 1 of the cylinder with the unit circle as its base; S_2 : unit sphere. Consider $f(x, y, z) = (\sqrt{1 - z^2}x, \sqrt{1 - z^2}y, z)$. Then simple calculation shows that f is equiareal.

Existence of equiareal mapping between a plane region and a surface patch $\sigma \Leftrightarrow$ Existence of vector functions U, V such that the first fundamental form for $\tilde{\sigma}(u, v) := \sigma(U(u, v), V(u, v))$ satisfies $\tilde{\mathbb{E}}\tilde{\mathbb{G}} - \tilde{\mathbb{F}}^2 = 1$. This gives the following partial differential equation det $J^2 = \frac{1}{\mathbb{E}\mathbb{G}-\mathbb{F}^2}$, where J is the Jacobian matrix.

$$f: S_1 \mapsto S_2.$$

- Isometry \Rightarrow Conformal and Equiareal.
- Conformal + Equiareal \Rightarrow Isometric.

Developable Surfaces

- Generalized cylinder. σ(u, v) = γ(u) + va, ||a|| = 1. The first fundamental form is du² + dv². We see that it is isometric to the plane.
- Generalized cone. σ(u, v) = vγ(u), ||γ|| = 1. The first fundamental form is v²du² + dv². We see that it is isometric to the plane.
- Tangent developable. $\sigma(u, v) = \gamma(u) + v\dot{\gamma}(u)$.
 - u is arc length for γ .
 - $\mathbb{E} = 1 + v^2 \kappa^2$, $\mathbb{F} = 1$, $\mathbb{G} = 1$.
 - Isometric to the plane.

Theorem

Any sufficiently small open subset of a surface locally isometric to a plane is an open subset of a plane, a generalized cylinder, a generalized cone, or a tangent developable.

Proof.

- 1. S must be a "ruled surface": $\sigma(u, v) = \gamma(u) + v l(u)^1$. Can assume $\|l\| = 1$.
- 2. A ruled surface is developable $\Leftrightarrow N(u_0, v)$ is independent of v.
- 3. A ruled surface is developable $\Leftrightarrow (\dot{\gamma} \times I) \cdot \dot{I} = 0.$

Looking Back and Forward

Required: $\S6.1$; Optional: $\S6.2 - 6.5$

- Definitions.
 - Isometry: Preserves arc length.

$$\mathbb{E}_1 = \mathbb{E}_2, \qquad \mathbb{F}_1 = \mathbb{F}_2, \qquad \mathbb{G}_1 = \mathbb{G}_2.$$

• Conformal: Preserves angle.

$$\mathbb{E}_1 = \lambda \mathbb{E}_2, \qquad \mathbb{F}_1 = \lambda \mathbb{F}_2, \qquad \mathbb{G}_1 = \lambda \mathbb{G}_2.$$

• Equiareal: Preserves area.

$$\mathbb{E}_1\mathbb{G}_1-\mathbb{F}_1^2=\mathbb{E}_2\mathbb{G}_2-\mathbb{F}_2^2.$$

The second fundamental form $\langle\!\langle \cdot, \cdot \rangle\!\rangle$.

- 1. Measuring curving of a surface.
- 2. Another bilinear form $\mathbb{L}du^2 + 2\mathbb{M}dudv + \mathbb{N}dv^2$.