

Math 348 Differential Geometry of Curves and Surfaces

Lecture 8 Curve Theory II. Frenet-Serret Equations and Applications

Xinwei Yu Sept. 28, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

Table of contents

- 1. Background Review
- 2. Understanding Curves via Curvature and Torsion
- 3. Frenet-Serret System
- 4. Other Topics
- 5. Looking Back and Forward

Please do not hesitate to interrupt me if you have a question.

Background Review

Curvature and Torsion

 γ (s): Curve with arc length parametriztion

- Tangent: $T(s) = \dot{\gamma}(s)$;
- Normal: $N(s) = \frac{\ddot{\gamma}(s)}{\|\ddot{\gamma}(s)\|}$;
- Binormal: $B(s) = T(s) \times N(s)$;
- Curvature: Measures "curving", $\kappa(s) = \|\ddot{\gamma}(s)\|$;
- Torsion: Measures "twisting", $\tau(s) = \frac{(\dot{\gamma}(s) \times \ddot{\gamma}(s)) \cdot \ddot{\gamma}(s)}{\kappa(s)^2} = B(s) \cdot \frac{\ddot{\gamma}(s)}{\kappa(s)}$.

Example

$$\gamma(s) = (a\cos t, a\sin t, bt).$$

Understanding Curves via

Curvature and Torsion

Zero Curvature ⇒ Straight

Example

A curve with zero curvature is (part of) a straight line.

Proof.

- 1. Let the curve by parametrized by arc length: $\gamma(s)$;
- 2. Zero curvature $\Rightarrow \ddot{\gamma}(s) = 0$;
- 3. $\dot{\gamma}(s)$ is a constant vector, denote it by T_0 ;
- 4. $\gamma(s) = \gamma_0 + \int_0^t T_0 = \gamma_0 + T_0 t$.

Zero Torsion ⇒ Planar

Example

A curve with zero torsion and nonzero curvature is a plane curve.

Proof.

- 1. Recall that $\dot{B}(s) = -\tau(s)N(s)$;
- 2. $B(s) = B_0$ constant vector;
- 3. $\dot{\gamma}(s) \perp B_0$;
- 4. Fix s_0 . $\forall s, (\gamma(s) \gamma(s_0)) \perp B_0$.

What if "nonzero curvature" is dropped?

Circle

Example

A curve with zero torsion and nonzero constant curvature is part of a circle.

Proof.

- 1. We know that it is a plane curve;
- 2. Let $O(s) := \gamma(s) + \kappa^{-1}N(s)$.
- 3. $\dot{N}(s) = \frac{\mathrm{d}}{\mathrm{d}s}(B(s) \times T(s))$.
- 4. Calculate $\dot{O}(s) \cdot N(s) = 0$.
- 5. Calculate $\dot{O}(s) \cdot T(s) = 0$.

Frenet-Serret System

Frenet-Serret System

 γ (s): Arc length parametrized.

$$\dot{T}(s) = \kappa(s)N(s), \tag{1}$$

$$\dot{N}(s) = -\kappa(s)T(s) + \tau(s)B(s), \tag{2}$$

$$\dot{B}(s) = -\tau(s)N(s). \tag{3}$$

• Analogy. A car on the road carrying an orthonormal frame.

An Example

Example

Let $\gamma(s)$ be arc length parametrized. Prove that γ is a spherical curve if and only if

$$\frac{\tau}{\kappa} = \frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{\dot{\kappa}}{\tau \kappa^2} \right).$$

Proof.

Let $\rho := 1/\kappa, \sigma := 1/\tau$.

- · Only if.
 - 1. $\|\gamma \gamma_0\| = r \Rightarrow T \cdot (\gamma \gamma_0) = 0, N \cdot (\gamma \gamma_0) = -\rho, B \cdot (\gamma \gamma_0) = -\sigma \dot{\rho}.$
 - 2. $\rho^2 + (\dot{\rho}\sigma)^2 = r^2$. Differentiate \Rightarrow conclusion.
 - · If.
 - 1. $\Rightarrow \rho^2 + (\dot{\rho}\sigma)^2 = r^2$;
 - 2. Let $\gamma_0 = \gamma + \rho N + \sigma \dot{\rho} B$, calculate $\dot{\gamma}_0 = 0$.

Other Topics

Fundamental Theorem for Curves

Theorem

- (Existence) Let $\kappa(s)$, $\tau(s)$ be two smooth functions. Further assume $\kappa(s) > 0$. Then there is a curve $\gamma(s)$ with s as its arc length parameter, $\kappa(s)$ as its curvature, and $\tau(s)$ as its torsion.
- (Uniqueness) Let $\gamma(s)$ and $\tilde{\gamma}(s)$ be two curves parametrized by arc length. If $\kappa(s) = \tilde{\kappa}(s)$ and $\tau(s) = \tilde{\tau}(s)$ for all s, then there is a rigid motion M such that $\tilde{\gamma}(s) = M\gamma(s)$.

How to find this rigid motion?

Local Canonical Form

- Not possible: Different curves with identical curvature and torsion everywhere;
- Possible: Different curves with identical curvature and torsion at one point;
- Consider $\gamma(s)$ with $\gamma(0) = 0$.
 - Assume T(0) = (1,0,0), N(0) = (0,1,0), B(0) = (0,0,1);
 - Let $\kappa_0 = \kappa(0), \tau_0 = \tau(0);$
 - · We have

$$x(s) = s - \frac{1}{6}\kappa_0^2 s^3 + o(s^3),$$
 (4)

$$y(s) = \frac{1}{2}\kappa_0 s^2 + \frac{1}{6}\kappa'_0 s^3 + o(s^3),$$
 (5)

$$z(s) = \frac{1}{6}\kappa_0 \tau_0 s^3 + o(s^3). \tag{6}$$

• The curvature and torsion of (s, $\frac{1}{2}\kappa_0 s^2$, $\frac{1}{6}\kappa_0 \tau_0 s^3$)?

Plane Curves

- Signed curvature. N_S : T rotates $\pi/2$ counter-clockwise; $\ddot{\gamma} = \kappa_S N_S$;
- · Turning angle.

$$\kappa_{\rm S}=\dot{\varphi}.$$

- Baby Gauss-Bonnet. Let γ be a simple closed plane curve.

$$\int_{\gamma} \kappa_{S}(s) ds = 2k\pi.$$

• Other properties. $\dot{N}_{S} = -\kappa_{S}T$.

Looking Back and Forward

Summary

Required Sections: §2.2.

- · Definitions.
 - 1. Signed curvature.

 N_S : T rotates $\pi/2$ counter-clockwise; $\ddot{\gamma} = \kappa_S N_S$.

- · Formulas.
 - 1. Frenet-Serret System:

$$\dot{T}(s) = \kappa(s)N(s), \tag{7}$$

$$\dot{N}(s) = -\kappa(s)T(s) + \tau(s)B(s), \tag{8}$$

$$\dot{B}(s) = -\tau(s)N(s). \tag{9}$$

2. $\dot{N}_S = -\kappa_S T$.

See You Next Tuesday!

Review for Midterm I

- 1. Curve theory;
- 2. Surfaces in Calculus.