Math 348 Fall 2017

LECTURE 8: DIFFERENTIAL GEOMETRY OF CURVES 11

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we see how curvature and torsion can help us understand
curves.
The required textbook section is §2.2.
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Differential Geometry of Curves & Surfaces

1. Understanding curves via curvature and torsion
Example 1. A curve with zero curvature is (part of) a straight line.

Proof. Let v(s) be arc length parametrization. Then ||4(s)|| = k(s) = 0 = ~(s) = 0.
Consequently

Y(s)=To (1)
a constant vector. Finally by Fundamental Theorem of Calculus,
15 =250+ [ 3(0)dt=r(s0) + (s = 50) o 2)
S0
which is a straight line. U

Example 2. A curve with zero torsion and nonzero curvature is a plane curve.

Proof. Recall that B(s) = —7(s) N(s), so B(s) = By, a constant vector. By definition
Y(s)=T(s)- By=0. Now by FTC,

(7(5) = 7(50)) - Bo= [ JRL dt} Bo= [ [3(0)- Bl de = 3)

0 0

Thus 7(s) lies in the plane

T
y |- Bo="(s0) Bo (4)
z

and the conclusion follows. O

Example 3. A curve with zero torsion and nonzero constant curvature is part of a circle.

Proof. As 7 =0 it is a plane curve, and the binormal B(s) = By a constant vector. Let
Yo(s) :=v(s) + kL N(s). We have

Fo(s) =T(s) + &N (s). (5)
Now differentiating N(s) = By x T' we obtain

I{_lN(S):/{_l(BOXT):BOXN(S):—T(S), (6)

consequently ,(s) =0=(s) =p is a constant vector. Finally we have
[7(s) = ol =57 (7)
a constant, so y(s) is (part of) a circle. O

2. Frenet-Serret equations

(One set of ODE determining the evolution of the vectors T'(s), N(s), B(s). )

e We have seen that the evolution of 7', B are governed by

T(s)=r(s)N(s),  B(s)=~7(s) N(s). (8)
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e For the equation for N(s), we notice that
N(s) = S(Bls) x T(s)
= B(s) xT(s)+ B(s) x T(s)
= —7(s) N(s) xT(s)+ B(s) x [k(s) N(s)]
= 7(s) B(s) = r(s) T'(s). (9)

Remark 4. It turns out that (10) completely determines the curve. More specifically we
have

THEOREM 5. (THEOREM 2.3.6 OF TEXTBOOK) Let K(s) >0 and T(s) be
giwven for all s€ (o, B). Let zq, Ty, No,so be given where xo € R3, Ty L Ny are unit
vectors, and sy € («, B). Then there is a unique curve with s as its arc length
parameter, satisfying x(so) = xg, with Ty, Ny as its unit tangent and normal
vectors at xgy, and takes K(s), T(s) as its curvature and torsion for s € (a, 3).

Exercise 1. Can we drop the “with s as its arc length parameter” part?

Exercise 2. Does the Frenet-Serret equations

T = kN
N' = —xT+7B (11)
B = —tN

still hold for general parametrization?
2.1. Examples

Example 6. Consider the curve (cost,sint,2t). We would like to calculate T', N, B, k, 7.

e Preparation. We calculate

z'(t) = (—sint,cost,?2), 12
z"(t) = (—cost,—sint,0), 13
:L.I//(t)

l="(O1 = V5,
x'(t) x 2"(t) = (2sint,—2cost, 1),

(12)
(13)
= (sint,—cost,0), (14)
(15)
(16)
l2'(t) x 2"()]| = V5. (17)

ot
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e Thus we have

x! 1
T() = = (—si P 1
(t) B[ \/5( sint,cost,2), (18)
x/X:C//
B(t) = = 2sint, —2cost, 1 1
(t) T <27 \/3( sint,—2cost, 1), (19)
N(t) = B xT=—(cost,sint), (20)
|lz"x2"||] 1
) = 12 2> 10— 21
2 x " ™"
T(t) = x5 (22)

Exercise 3. Consider the curve z(t) = (cost, sint, e’). Without doing any calculation, can you predict
the behavior of x(t), 7(t) as t —> c0? Check your prediction through calculation.

Example 7. Consider the curve y= f(z), z=0. We parametrize it as z(t) =(t, f(¢),0). Then

v@) = (1,10, )

viE) = (0.70), (20

P10 = (0.570) 25)

0l = VITTF (26)

z'(t) x 2" (t) = (0,0, f"), (27)

o) < 2@l = 1171 25)

Therefore

_ 000

ro) - G200, 29)

Bt) = (0,0.5en(7"(), )

¥ = s /0, 1) 1)

r Xx
0 = TR S e o
) = 0. (33)

Example 8. Let ~(s) be arc length parametrized. Prove that v is a spherical curve if and

only if
T df K
o). 4
Kk  ds < TK? > (34)
Proof.
e Only if. .
We need to prove that 7(s) is a spherical curve = ~ = %(%)
As ~v(s) is spherical, there is a constant vector 7y and a constant r such that
17(8) = ol =7 (35)
Differentiating (7(s) — 7o) - (7(s) — 7o) =r* we have
T(s)- (7(s) =) =0. (36)
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Differentiating this we have

r(s) N(s)-(v(s) =

which gives

Differenting (38) we have

(=kT+7B)-(v(s) —70)=—

Thanks to (36) we reach

20)=~T(s) T(s) =1

K

B (1(s) = 70) =~

Putting together

T(s)- (7= 10) =0, N-(y=20) =, B-(7~ )=~

we have

Consequently

Taking % of this we obtain — = %(

o If

TK?

T/i

=)
TK2 /'

We need to prove that — = %(%) = v(s) is a spherical curve.

Thanks to the “only if” part we make the following guesses:

$):=~(s)+——N(s ——’%(S) S
70(>’ 7()+/€(S)N(> 7’(8)/{(5)23( )7

(s) i \/ (+5

—0(s)[[ =7(s),
= 07 70(‘9) =0.

i (o) + ()

It follows that
[v(s)

and all we need to prove are 7(s)
i. 7(s)=0. We have
d

(s =

k1

_o v 2
K2 K 7'/{2 ds TK2

ﬁ T_|_ d =0.
TK? Kk ds 7'/{2

(39)

(40)

(41)

(42)

(43)

(47)
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ii. qo(s)=0. We have

. . K 1. d K K
Y = /V_FN‘F—N—E( )B— 2B

K TK? TK
= T—ﬁN+l[—nT+TB]—i<i>B+£N
K2 K ds\ 7k2 K2
= 0. (48)

3. The local canonical form

Let v(s) be the arc length parametrization of the curve. We can calculate its Taylor
expansion near Sg:

3() =7 (50) = 3(50) (5 = s0) + 15 (s — 502+ T (s — P R(s s0) (49)

ll2(s, so)ll
s — sol?

Now we try to re-write (49) using x, 7, T, N, B, s, so only. Clearly ¥ =T and
4=k N. Differentiating one more time we have

where limg_, 4,

¥=iN+KkN=kiN—k2T+KkTB. (50)

Therefore we have
v(s) = v(s0) = a(s, s0) T'(s0) + b(s, s0) N(s0) +c(s, s0) B(so) + R(s, s0) (51)

where

a(s, ) = (5—s0)— “<20>2 (5 — 50)°, (52)
50 = R0 =0 (s (5 ) -
(s, 50) = K(s0) 7‘(5%) (s — 50)3’ (54)
lim LS50 (55)

s—S0 |S - S(]|3

4. Plane curves

For plane curves B(s) is a constant.
{T', N} is not convenient as N may not be counter-clockwise from 7.

Define the “signed normal” Ng to be the vector obtained from 7' by rotating /2
counter-clockwise. Further define the “signed curvature”

Tzlist. (56)

If we write T'(s) = (cos ¢(s), sin ¢(s)), we obtain

T'=(=@(s)sing(s), ¢(s) cose(s)). (57)
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On the other hand we have
Ng=(—sinp(s), cosp(s)). (58)
Consequently rg(s) = @(s).

e Let v be a simple closed plane curve. Then T = Teng and

/ ks(s)ds=2km (59)
for some k € Z. !

o  We will prove later in the course that k=1;

o Generalization of (59) to surfaces leads to the Gauss-Bonnet Theorem, which
would be the last and biggest theorem of Math 348.
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