
Lecture 8: Differential Geometry of Curves II

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we see how curvature and torsion can help us understand
curves.

The required textbook section is �2.2.

The examples in this note are mostly di�erent from examples in the textbook. Please
read the textbook carefully and try your hands on the exercises. During this please don't
hesitate to contact me if you have any questions.
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1. Understanding curves via curvature and torsion

Example 1. A curve with zero curvature is (part of) a straight line.

Proof. Let 
(s) be arc length parametrization. Then k
�(s)k = �(s) = 0 =) 
�(s) = 0.
Consequently


_(s)=T0 (1)

a constant vector. Finally by Fundamental Theorem of Calculus,


(s)= 
(s0)+

Z
s0

s


_(t) dt= 
(s0)+ (s¡ s0)T0; (2)

which is a straight line. �

Example 2. A curve with zero torsion and nonzero curvature is a plane curve.

Proof. Recall that B_ (s) = ¡� (s) N(s), so B(s) = B0, a constant vector. By de�nition

_(s)=T (s) �B0=0. Now by FTC,

(
(s)¡ 
(s0)) �B0=

�Z
s0

s


_(t) dt

�
�B0=

Z
s0

s

[
_(t) �B0] dt=0: (3)

Thus 
(s) lies in the plane 0@ x
y
z

1A�B0= 
(s0) �B0 (4)

and the conclusion follows. �

Example 3. A curve with zero torsion and nonzero constant curvature is part of a circle.

Proof. As � = 0 it is a plane curve, and the binormal B(s) = B0 a constant vector. Let

0(s) := 
(s)+ �¡1N(s). We have


_0(s)=T (s)+�¡1N_ (s): (5)

Now di�erentiating N(s)=B0�T we obtain

�¡1N_ (s)= �¡1
¡
B0�T_

�
=B0�N(s)=¡T (s); (6)

consequently 
_0(s)= 0=) 
0(s)= 
0 is a constant vector. Finally we have

k
(s)¡ 
0k=�¡1 (7)

a constant, so 
(s) is (part of) a circle. �

2. Frenet-Serret equations

One set of ODE determining the evolution of the vectors T (s); N(s); B(s).

� We have seen that the evolution of T ;B are governed by

T_ (s)= �(s)N(s); B_ (s)=¡� (s)N(s): (8)
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� For the equation for N(s), we notice that

N_ (s) =
d
dt
(B(s)�T (s))

= B_ (s)�T (s)+B(s)� T_ (s)
= ¡� (s)N(s)�T (s)+B(s)� [�(s)N(s)]
= � (s)B(s)¡�(s)T (s): (9)

Frenet-Serret equations for arc length parametrization.

T 0 = �N
N 0 = ¡�T + �B
B 0 = ¡�N

: (10)

Remark 4. It turns out that (10) completely determines the curve. More speci�cally we
have

Theorem 5. (Theorem 2.3.6 of Textbook) Let K(s) > 0 and T(s) be
given for all s2(�; �). Let x0, T0, N0,s0 be given where x02R3, T0?N0 are unit
vectors, and s02 (�; �). Then there is a unique curve with s as its arc length
parameter, satisfying x(s0) = x0, with T0; N0 as its unit tangent and normal
vectors at x0, and takes K(s);T(s) as its curvature and torsion for s2 (�; �).

Exercise 1. Can we drop the �with s as its arc length parameter� part?

Exercise 2. Does the Frenet-Serret equations

T 0 = �N
N 0 = ¡�T + �B
B 0 = ¡�N

(11)

still hold for general parametrization?

2.1. Examples

Example 6. Consider the curve (cos t; sin t; 2 t). We would like to calculate T ;N ;B; �; � .

� Preparation. We calculate

x0(t) = (¡sin t; cos t; 2); (12)
x00(t) = (¡cos t;¡sin t; 0); (13)
x000(t) = (sin t;¡cos t; 0); (14)
kx0(t)k = 5

p
; (15)

x0(t)� x00(t) = (2 sin t;¡2 cos t; 1); (16)
kx0(t)� x00(t)k = 5

p
: (17)
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� Thus we have

T (t) =
x0

kx0k =
1

5
p (¡sin t; cos t; 2); (18)

B(t) =
x0�x00
kx0�x00k =

1

5
p (2 sin t;¡2 cos t; 1); (19)

N(t) = B �T =¡(cos t; sin t); (20)

�(t) =
kx0�x00k
kx0k3 =

1
5
; (21)

� (t) =
(x0�x00) �x000
kx0�x00k2 =

2
5
: (22)

Exercise 3. Consider the curve x(t)= (cos t; sin t; et). Without doing any calculation, can you predict
the behavior of �(t); �(t) as t¡!1? Check your prediction through calculation.

Example 7. Consider the curve y= f(x); z=0. We parametrize it as x(t)=(t; f(t);0). Then

x0(t) = (1; f 0; 0); (23)
x00(t) = (0; f 00; 0); (24)
x000(t) = (0; f 000; 0); (25)
kx0(t)k = 1+ (f 0)2

p
; (26)

x0(t)�x00(t) = (0; 0; f 00); (27)
kx0(t)�x00(t)k = jf 00j: (28)

Therefore

T (t) =
(1; f 0(t); 0)

1+ f 0(t)2
p ; (29)

B(t) = (0; 0; sgn(f 00(t))); (30)
N(t) = sgn(f 00(t)) (¡f 0(t); 1); (31)

�(t) =
kx0� x00k
kx0k3 =

jf 00j¡
1+ (f 0)2

p �
3
; (32)

� (t) = 0: (33)

Example 8. Let 
(s) be arc length parametrized. Prove that 
 is a spherical curve if and
only if

�
�
=

d
ds

�
�_
� �2

�
: (34)

Proof.

� Only if.
We need to prove that 
(s) is a spherical curve =) �

�
=

d

ds

¡ �_

� �2

�
.

As 
(s) is spherical, there is a constant vector 
0 and a constant r such that

k
(s)¡ 
0k= r: (35)

Di�erentiating (
(s)¡ 
0) � (
(s)¡ 
0)= r2 we have

T (s) � (
(s)¡ 
0)= 0: (36)
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Di�erentiating this we have

�(s)N(s) � (
(s)¡ 
0)=¡T (s) �T (s)=¡1 (37)

which gives

N(s) � (
(s)¡ 
0)=¡
1

�(s)
: (38)

Di�erenting (38) we have

(¡�T + �B) � (
(s)¡ 
0)=
�_
�2
: (39)

Thanks to (36) we reach

B � (
(s)¡ 
0)=
�_
� �2

: (40)

Putting together

T (s) � (
¡ 
0)= 0; N � (
 ¡ 
0)=¡
1
�
; B � (
¡ 
0)=

�_
� �2

(41)

we have


 ¡ 
0=¡
1
�
N +

�_
� �2

B: (42)

Consequently �
1
�

�
2

+

�
�_
� �2

�
2

= r2: (43)

Taking d

ds
of this we obtain �

�
=

d

ds

¡ �_

� �2

�
.

� If.
We need to prove that �

�
=

d

ds

¡ �_

� �2

�
=) 
(s) is a spherical curve.

Thanks to the �only if� part we make the following guesses:


0(s) := 
(s)+
1

�(s)
N(s)¡ �_ (s)

� (s) �(s)2
B(s); (44)

r(s) :=

�
1

�(s)

�
2

+

�
�_(s)

� (s)�(s)2

�
2

s
: (45)

It follows that

k
(s)¡ 
0(s)k= r(s); (46)

and all we need to prove are r_(s)= 0; 
_0(s)= 0.

i. r_(s)= 0. We have

d
ds
[r(s)2] =

d
ds

��
1

�(s)

�
2

+

�
�_ (s)

� (s) �(s)2

�
2
�

= ¡2 �_
�2

1
�
+2

�_
� �2

d
ds

�
�_
� �2

�
=

2�_
� �2

�
¡ �
�
+

d
ds

�
�_
� �2

��
=0: (47)

Math 348 Fall 2017

5



ii. 
_0(s)= 0. We have


_0 = 
_ ¡ �_
�2
N +

1
�
N_ ¡ d

ds

�
�_
� �2

�
B ¡ �_

� �2
B_

= T ¡ �_
�2
N +

1
�
[¡�T + �B]¡ d

ds

�
�_
� �2

�
B+

�_
�2
N

= 0: (48)
�

3. The local canonical form
� Let 
(s) be the arc length parametrization of the curve. We can calculate its Taylor

expansion near s0:


(s)¡ 
(s0)= 
_(s0) (s¡ s0)+

�(s0)
2

(s¡ s0)2+

___(s0)
6

(s¡ s0)3+R(s; s0) (49)

where lims!s0
kR(s; s0)k
js¡ s0j3

=0.
Now we try to re-write (49) using �; � ; T ; N ; B; s; s0 only. Clearly 
_ = T and


�= �N . Di�erentiating one more time we have


___= �_ N +�N_ =�_ N ¡�2T +� �B: (50)

Therefore we have


(s)¡ 
(s0)= a(s; s0)T (s0)+ b(s; s0)N(s0)+ c(s; s0)B(s0)+R(s; s0) (51)

where

a(s; s0) = (s¡ s0)¡
�(s0)2

6
(s¡ s0)3; (52)

b(s; s0) =
�(s0) (s¡ s0)2

2
+
�0(s0) (s¡ s0)3

6
; (53)

c(s; s0) =
�(s0) � (s0) (s¡ s0)3

6
; (54)

lim
s!s0

kR(s; s0)k
js¡ s0j3

= 0: (55)

4. Plane curves
� For plane curves B(s) is a constant.

� fT ;N g is not convenient as N may not be counter-clockwise from T .

� De�ne the �signed normal� NS to be the vector obtained from T by rotating � / 2
counter-clockwise. Further de�ne the �signed curvature�:

T_ =�SNS: (56)

� If we write T (s)= (cos '(s); sin '(s)), we obtain

T_ = (¡'_ (s) sin'(s); '_ (s) cos'(s)): (57)
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On the other hand we have

NS=(¡sin'(s); cos'(s)): (58)

Consequently �S(s)= '_ (s).

� Let 
 be a simple closed plane curve. Then Tstart=Tend andZ



�S(s) ds=2 k � (59)

for some k 2Z.

� We will prove later in the course that k=1;

� Generalization of (59) to surfaces leads to the Gauss-Bonnet Theorem, which
would be the last and biggest theorem of Math 348.
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