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Please do not hesitate to interrupt me if you have a question.



Background Review



Curves in Calculus

- Definitions.
1. Regular Curve.
Amap~: (a,B) — R", for some —oo < a < B < o0, such that
~v € C*, and #(t) # 0 for every t € («, ).
2. Arc Length Parametrization.
~(s) is an arc length parametrization if [|¥(s)|| = 1 at every s.
3. Tangent Vector.
4(t) is the tangent vector for the curve ~(t).
- Formulas.
1. Arc Length.

b
L= [ Wi
a
- Procedures.

1. Re-parametrize with arc length.
11 Solve 3(t) = 4Dl
1.2 Calculate inverse function T(s) of S(t);
1.3 Re-write I'(s) = y(T(s)).



Curvature and the Normal Vector



Curvature for Arc Length Parametrized Curves

’7(5): Arc length parametrized curve.‘

- What is curvature?
A function describing how ~(s) curves.

- Formula for Curvature.

K(S) = 7SI -

- Why this formula?

1. How fast the unit tangent vector turns;
2. How fast the curve deviates from a straight line.

- Unit normal.



[5(s) = (I |

Example
- Circle;
- y(t) = (% cost+ %sint, \[cost, 5 cost — ﬁsint)A
- (t) = (e, e, V2t).

Tonly works for arc length parametrized curves!



Curvature for General Curves

’7(0: Not necessarily arc length parametrized.

- The formula.

«(t) = O30
(Bl
- Understanding and remembering the formula.
- What does 4(t) x (t) mean?
- Why divide by ||5(t)|I*?



Torsion and the Binormal Vector




Torsion for Arc Length Parametrized Curves

’7(5): Arc length parametrized curve.

- What is torsion?
A function describing how ~(s) twists.

- The formula.

- Why this formula?
- Binormal.
B(s) := T(s) x N(s).
- How to measure "twisting”?
1. B'(s) =T(s) x N'(s);
2. 7(s) = —B/(s) - N(s).



7(s) = GEXIENT(E)

K2(S) .

Example
- Straight lines;
- Circles;
- Plane curves;
- Helix.



Torsion for General Curves

’7(0: Not necessarily arc length parametrized. ‘

- The formula.

() = (O35
[I7(t) x A0l
- Understanding and remembering the formula.
1. Meaning of ((t) x ¥(t)) - ¥(t): Tendency of y(t) "leaving” the plane

spanned by {¥,4}.
2. Why divide by [|4(t) x 5(t)||*.

I e e /A
0= B3 "=

Extra x(t)™": Factoring out the effect of curvature, want "pure
twisting” rate.?

ZRotating a candy cane?



Looking Back and Forward




’Required Sections: §21, §2.3. ‘

- Tangent, Normal, Binormal.
- ~v(s) arc length parametrized:

Ts) =4 M) =2 B(s) = T(s) x N(s).
- General situation.

v Y XA
O=Fpr BO=Fgp NO=BOxT
- Curvature and torsion.
- ~(s) arc length parametrized:

&(s) =I5, T(s) =
- General situation.
(1) = II'V(t) X &3(t)||7 (1) = (W(t_) X *’/(Q) : ’Y'z(t)_
()l [7(t) < ()l




See You Next Tuesday!

Differential Geometry of Curves Cont.

1. Understanding curves by curvature and torsion;
2. Frenet-Serret equations;

3. Local canonical form.
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