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Please do not hesitate to interrupt me if you have a question.
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Brief Review



Functions Between Surfaces

• Definitions.
1. f is smooth⇐⇒ F = (σ̃)−1 ◦ f ◦ σ is smooth.
2. The Gauss Map G : S 7→ S2, G(p) = N(u0, v0) where p = σ(u0, v0).

• Formulas.
1. Differential.

Dpf(aσu + bσv) = ãσ̃ũ + b̃σ̃ṽ,
(
ã
b̃

)
= DF(u0, v0) ·

(
a
b

)
.

2. Unit normal.
N(u, v) = σu×σv

∥σu×σv∥ .

• Procedures.
Calculate Dpf.

1. Pick σ for S covering p (if not given);
2. Pick σ̃ for S̃ covering f(p) (if not given);
3. Formulate F = (σ̃)−1 ◦ f ◦ σ;
4. Calculate DF(u0, v0) at σ(u0, v0) = p.
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More on the Gauss Map



Properties of the Gauss Map

• Visualization: Catenoid, Cylinder.
• Natural surface patch: N(u, v).
• TpS = TG(p)S2.
• DpG(σu) = Nu, DpG(σv) = Nv.
• Two ”natural” basis for Tf(p)S2.

1. {Nu,Nv};
2. {σu, σv}.

• Matrix representation for DpG using either basis.
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https://youtu.be/twwoQ6g0pAY
https://youtu.be/K9gr6Uji2WA


Isometry



Isometry

S, S̃: Surface patches; f : S 7→ S̃ smooth.

• Isometry.
• f onto;
• γ(t): ∀ curve in S. p = γ(t1), q = γ(t2): ∀ points on γ.
• Arc length of γ between p, q equals arc length of f(γ) between
f(p), f(q).

• Simple Properties. f: Isometry.
• f is bijective.
• f−1 is an isometry between S̃ and S.

• Implications on Measurements. f: Isometry between S and S̃.
• f is area-preserving.
• f is angle-preserving1.

• Isometric Surfaces.
S and S̃ isometric: There is an isometry between them.

1More precisely, Dpf is angle preserving at every p.
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Cartography



Faithful Maps

A map is a function f : SMap 7→ SReality

• Ideal Map.
Ideally, a map should
1. be (locally) bijective;
2. Has the same ”scale” everywhere.

Existence of an ideal map⇐⇒ Existence of a (local) isometry.
• Our Maps are Not Ideal.

• Everyday map distorts distance and area: Thetruesize.
• Angles are preserved2.

Can we do better?
2Important for navigation!
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https://thetruesize.com


Mercator Projection.

σ(u, v) = (sechu cos v, sechu sin v, tanhu).

• Not As We Thought! For example, Britannica Kids has it wrong
here.

• Why Not?
Consider a general cylindrical projection

σ(u, v) = (f(u) cos v, f(u) sin v,g(u))

with f′(u) > 0, and f2 + g2 = 1.
1. Angle preservation: ∥σu∥ = ∥σv∥.
2. Calculation gives f′2 + g′2 = f2.
3. Differentiate f2 + g2 = 1 to obtain g′ = −ff′/g.
4. Obtain f′ = f

√
1− f2.

5. Solve.
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http://kids.britannica.com/students/assembly/view/166513


No Flat Map for Sphere.

There is no isometry between S and S̃ if S is part of a plane and S̃ is
a part of a sphere.

• Idea of the Proof.
1. The shortest curve connecting any two points on a plane is
straight;

2. The shortest curve connecting any two points on a sphere is part
of a big circle;

3. Consider a special ”triangle” to reach contradiction.

• But We have Proved Nothing!
The earth surface is not a sphere – will settle this by the

end of the semester.
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Geodesics for the Plane

Geodesic: A curve that is the shortest path
between two (close enough) points on it.

Example
Geodesics in a plane are straight lines.

Proof.

L =

∫ b

a
∥γ̇(t)∥dt

⩾
∥∥∥∥∥
∫ b

a
γ̇(t)dt

∥∥∥∥∥
= ∥γ(b)− γ(a)∥ .
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Geodesics for the Sphere

1. Can assume the two points lie on the yz plane (0, y1, z1),
(0, y2, z2);

2. γ(t) = (x(t), y(t), z(t), t ∈ [a,b] connects the two points:
x(a) = x(b) = 0, y(a) = y1, y(b) = y2, z(a) = z1, z(b) = z2.

3. Γ(t) = (0, r(t), z(t)) where r(t) =
√
x(t)2 + y(t)2.

4. Γ(t) connects the two points, with arc length ⩾ the great arc
connecting them;

5. Calculate

LΓ =

∫ b

a

∥∥∥Γ̇(t)∥∥∥dt =

∫ b

a

√
ṙ(t)2 + ż(t)2dt

=

∫ b

a

√
(x(t)ẋ(t) + y(t)ẏ(t))2

x(t)2 + y(t)2 + ż(t)2dt

⩽
∫ b

a

√
ẋ(t)2 + ẏ(t)2 + ż(t)2dt

=

∫ b

a
∥γ̇(t)∥dt = Lγ . 9



Looking Back and Forward



Summary

• The Gauss map:
{σu, σv} is a basis for both TpS and TG(p)S2;

• Isometry.
• Definition: f : S 7→ S̃ conserves arc length;
• Properties: Area and angels are also conserved;
• Plane and sphere are not isometric;
• Will discuss in more details later in the course.
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See You Next Tuesday!

Differential Geometry of Curves

1. Curvature;
2. Torsion.
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