
Lecture 6: Isometry

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we �nish the preliminary discussion of the Gauss map and
introduce the idea of isometry. We also prove that there cannot be a planar
map for a spherical region.

The examples in this note are di�erent from examples in the textbook. Please read the
textbook carefully and try your hands on the exercises. During this please don't hesitate
to contact me if you have any questions.
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1. Properties of the Gauss Map
� Let G:S 7!S2 be the Gauss map of the surface S. Then by de�nition TpS?N(p). On

the other hand, since S2 is a sphere, there holds TG(p)S2?G(p)=N(p). Consequently
the two surfaces TpS and TG(p)S2 are parallel, and are in fact the same plane (when
viewed as a �velocity space�.

� Consequently, we can use the basis for TpS, f�u; �vg as the basis for TG(p)S2. In fact
it is bene�cal to think of DpG as a linear transformation from TpS to itself.

� Let S be parametrized by �. Then S2 can be parametrized as G �� which is exactly
the function

N(u; v)=
�u��v
k�u��vk

: (1)

In other words, it is natural to parametrize S2 by N .

� If we use fNu; Nvg as basis for TG(p)S2, the matrix representation for DpG is the
identity matrix

�
1 0
0 1

�
. To see this, we note that

i. S is parametrized by �;

ii. S~ := G(S)�S2 is parametrized by N(u; v);

iii. N¡1 � G ��=N¡1 �N = I the identity mapping.

iv. Consequently the derivative is also identity.

� If we use f�u; �vg as basis for TG(p)S2, things become interesting. Considering the
curve 
(t)=�(t;0), we see that the corresponding curve on S2 isN(t;0). Consequently
we have

DpG(�u)=Nu (2)

and similarly

DpG(�v)=Nv: (3)

From these we can solve the matrix representation of DpG. The entries of these matrix
are the most important quantities in classical di�erential geometry. We will discuss
much more about this later in the course.

2. Isometry

� f :S 7!S~ is an isometry when it is bijective, and preserves arc length.

� More speci�cally, for any curve 
(t) in S, the arc length of 
 from 
(a) to 
(b) equals
the arc length of the curve f(
(t)), on S~, from f(
(a)) to f(
(b)).

� One can show that if f is an isometry, then f also preserves area, that is, area of
W �S equals the area of f(W )�S~ for any W .

� One can also show that if f is an isometry, then at every p2S, Dpf preserves angle.
More speci�cally, if v1=Dpf(u1); v2=Dpf(u2), then \(v1; v2)=\(u1; u2).
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3. Geodesics on the Plane, Cylinder, and Sphere

3.1. On the plane

� The problem.
Let A;B be two points in Rn. There are in�nitely many curves that connect the

two points. Find the one with shortest arc length.

� Mathematical formulation.
Among all curves 
(t) satisfying 
(a)=A; 
(b)=B, �nd the one with minimal

L :=

Z
a

b

k
_(t)kdt: (4)

� The solution.
We notice that

i. There holds

L>






Z
a

b


_(t) dt






= k
(b)¡ 
(a)k= kB ¡Ak: (5)

ii. For the curve 
L(t)=
b¡ t
b¡ a y+

t¡ a
b¡ a z, we have

L=

Z
a

b

k
_L(t)kdt=
Z
a

b




 1
(b¡ a) (z¡ y)





 dt= kB ¡Ak: (6)

Therefore the solution is 
_L(t) which is a straight line.

Exercise 1. Prove that 
L(t) is a straight line and �nd its arc length parametrization.

3.2. On the cylinder

� The problem.
Let A; B be two points in R3 lying on the cylinder with the base circle centered

at the original and with radius 1. Find the shortest path along the cyclinder surface
connecting the two points.

� Mathematical formulation.
Among all curves 
(t) = (cos t; sin t; z(t)) satisfying 
(a) = A = (xA; yA; zA);


(b)=B=(xB ; yB; zB), �nd the one with minimal

L :=

Z
a

b

k
_(t)kdt: (7)

� The solution. (Optional)
We have

L=

Z
a

b

1+ z_(t)2
p

dt (8)

with z(t) satisfying z(a) = zA; z(b) = zB and also cos a = xA; cos b = yA; sin a = xB;
sin b= yB.
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Since z_(t) is a smooth function, we have

L= lim
k!1

b¡ a
k

X
i=0

k¡1

1+ z_(ti)2
p

(9)

where ti= a+
i

k
(b¡ a). Now notice that the function f(x) := 1+x2

p
is convex, by

Jensen's inequality we have

1
k

X
i=0

k¡1

1+ z_(ti)2
p

> 1+

 
1
k

X
i=0

k¡1

z_(ti)

!
2

vuut : (10)

As

lim
k!1

b¡ a
k

X
i=0

k¡1

z_(ti)=

Z
a

b

z_(t) dt= zA¡ zB (11)

we have

L > (b¡ a) 1+
� zA¡ zB

b¡ a

�
2

r
= (b¡ a)2+(zA¡ zB)2
p

> (b0¡ a0)2+(zA¡ zB)2
p

: (12)

where b0¡ a0<� and satis�es also cos a0=xA; cos b0= xB; sin a0= yA; sin b0= yB.
On the other hand, the arc length of the curve�

cos t; sin t; zA+
t¡ a0
b0¡ a0

(zB¡ zA)
�

(13)

is exactly (b0¡ a0)2+(zB¡ zA)2
p

.

Exercise 2. Visualize this shortest path. What would it look like if we ��atten� the cylinder?

3.3. On the sphere

� The problem.
Let A;B be two points on unit sphere centering at the origin. Find the shortest

path on the sphere connecting them.

� Mathematical formulation.
Among all curves with 
(a) =A; 
(b) =B, x2(t) + y2(t) + z2(t) = 1, �nd the one

minimizing the integral

L :=

Z
a

b

k
_(t)k dt: (14)

� The solution. (Optional)
Our goal is to show that the minimizing curve is the great arc connecting A; B.

For arbitrary 
(t) on the sphere connecting A;B, we de�ne a new curve:

¡(t)= (0; r(t); z(t)) (15)
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where r(t) := (x(t)2+ y(t)2)1/2. We notice that ¡(t) connects y; z and covers the great
arc connecting y; z. Therefore the arc length of ¡(t) is no less than � /2. For X(t)
we calculate

L¡ =

Z
a

b

r_(t)2+ z_(t)2
p

dt

=

Z
a

b (x(t)x_(t)+ y(t) y_(t))2

x(t)2+ y(t)2
+ z_(t)2

r
dt

6
Z
a

b

x_(t)2+ y_(t)2+ z_(t)2
p

dt=L: (16)

Technical Aside
Cauchy-Schwartz. The crucial step, the one with 6, is due to the so-called

Cauchy-Schwartz inequality for vectors:

ju � v j6 kuk kvk: (17)

To prove it, notice that

(u¡ t v) � (u¡ t v)= ku¡ t vk2> 0 (18)

for all t. Expanding the left hand side we see that

kvk2 t2¡ 2 (u � v) t+ kuk2> 0 (19)

holds for all t, and the conclusion follows.

Exercise 3. Finish the proof. (Hint: When is a quadratic equation t2¡A t+B=0 having at
most one real solution?)

Remark 1. From the above we see that for each case (plane, cyclinder, sphere), a new
idea/technique is needed, worse still, we have to somehow know the answer before we start�
much the same as the situation in classical geometry. The reason for this is that we have
used too little calculus. In the following weeks, we will apply more calculus to geometry
problems, and eventually develop a complete theory for the problem ��nding shortest path
on a surface�. In this theory, the discovery of such path will be reduced to the solution of a
single set of ODEs whose derivation is mechanical.

No more ad hoc ideas, no more clever tricks.
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