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Please do not hesitate to interrupt me if you have a question.



Brief Review



Last Lecture

- Definitions.
1. Surface (Surface Patch, Regular Surface Patch) .
o : U~ R U: open set in R?, o bijective, both o and ¢~
smooth, and o, x oy # 0 anywhere.
- Formulas.
1. Tangent Plane.
TG(UO,VO)S = {CIO’u(UQ7 Vo) + bU\/(Uo, Vo) 1 a, be ]R}

2. Surface Area.

A= / llou x ov|| dudv.
u

- Procedures.

10nly in this course (348 Fall 2017) that we do not make distinction between them.



Smooth Functions Between
Surfaces



Functions Between Surfaces

Setup:

S, S: Two surfaces represented by patches o : U— R3,5 : U — R3

- Functions between surfaces.
f:S—S.
- Everyday examples.

- Planar map;
- Globe.

- Questions to Answer.

1. How to define smoothness for f?
2. How to differentiate f?
3. Geometric interpretations of the derivatives?



Smoothness of Functions Between Surfaces

SZJZU'—)R3;§25ZD'—>R3.fZS’—>§.

- Smoothness.

- Note: f may not be defined on the whole R®.
- fis said to be smooth if the composite function F : U — U, defined
as F=(6)""ofoao,is smooth.

Example
Let S be the upper hemisphere represented by
o(u,v) = (u,v,v1— uZ —v2) with U the unit disk. Let S be part of the
paraboloid &(0i, V) = (0 — 1, =1, (0 — 1)? + (v — 1)) with U also the
disk {(0,7) | (G —1)> 4+ (7 —1)? < 1}. Let f(x,¥,2) = (X, ¥, x> +y?). Then
we have

Fu,v) = (u+1,v+1).



Differentiation

f:S— 5. p eS. Df Differential of f at p.

- Meanings of D,f.
- Map Analogy: Relation between velocities.

Dpf(velocity at p € S) = velocity at f(p) € S.

- Geometry: Relation between tangent vectors. Dpf : TpS = Tqp)S;
- Mathematics: Dpf is a linear transformation from T,S to Ty)S.

Linear transformation = matrix representation. How to calculate?
Idea: UseF=(5)""ofoo.



Calculation of D,f

f:S—S peS F=(5)"ofoo.

- Basis for T,S: 0y, 0,. Calculated at p = o(u, v).
+ Basis for Ty, S: &5, 5. Calculated at f(p) = &(F(u, v)).

- Key identity:
5(F(u,v)) = flo(u.v))

- Calculation of Dpf.




Procedures for the Calculation of D,f

To calculate Dpf,

1. Pick o for S covering p (if not given);

2. Pick & for S covering f(p) (if not given);
3. Formulate F= (5)"ofoo;

4. Calculate DF(ug, vo) at o(uo, Vo) = p.

Example
Calculate Dpf for p = (0,0,0) and

4u 4y 2(U? +v2) )

u,v,0) = ) )
f(7/ ) <U2+V2+4 u2_|_V2_|_4 u2+v2+4



The Gauss Map




The Gauss Map

- The Unit Normal.

N(u7\/) = iM
low x oyl

- or —? We will not worry about this in 348 Fall 2017. From now

on we simply take +.
- The Gauss Map.
© G:S—S% G(p) = N(uo, vo) where p = o (U, Vo).
- Intuition of the Gauss Map.

Example

1. Plane;

2. Cylinder

3. Sphere;

4. Paraboloid.



Properties of the Gauss Map

- Visualization: Catenoid, Cylinder.
- Natural surface patch: N(u,v).

© TpS = Tp)S™

- Two "natural” basis for Ty, S?.

1. {Nu, N\/}}
2. {ou,0v}.

- Matrix representation for D,G using either basis.


https://youtu.be/twwoQ6g0pAY
https://youtu.be/K9gr6Uji2WA

Looking Back and Forward




- Required Textbook Sections. §41-4.4, §4.5 (before Definition
457).
- Optional Textbook Sections. Rest of §4.5, §51-5.6.

- Definitions.

1. fis smooth <= F = (5)"'ofo o is smooth.

2. The Gauss Map G : S — S?, G(p) = N(uo, Vo) where p = o (o, Vo).
- Formulas.

1. Differential.

a a
<5> = DF(uo, vo) - <b>

2. Unit normal.
N(u:v) = e

- Procedures.
Calculate Dpf.
Pick o for S covering p (if not given);
Pick & for S covering f(p) (if not given);
Formulate F= () 'ofoo;
Calculate DF(uo, Vo) at o(uog, Vo) = p.

g W N =



See You Thursday!

Isometry

- What is isometry?
- Properties of isometry.
- Isometry and maps.

- No map for the sphere.
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