
Lecture 5: Surfaces II: Functions Between Surfaces

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we give mathematical de�nition of surfaces as a compatible
collection of surface patches. We also de�ne the tangent plane and normal
vectors of surfaces.

The required textbook sections are �4.2, �4.3, �4.4.

The examples in this note are mostly di�erent from examples in the textbook. Please
read the textbook carefully and try your hands on the exercises. During this please don't
hesitate to contact me if you have any questions.
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1. Functions between surfaces
The transition from multivariable calculus to classical di�erential geometry
is ful�lled when we start to di�erentiate functions mapping one surface to
another. Such di�erentiation is de�ned through the help of surface patches.
The di�erentials are linear maps between tangent planes.

� Consider two surfaces S; S~. We can consider a function f from S to S~, that is given
p2S, we have p~= f(p)2S 0 de�ned.1

� Let f : S 7! S~ be a function from one surface S to another surface S~. Let p 2 S. We
would like to �di�erentiate� f at p.

� Dpf :TpS 7!Tp~S~ is a linear map. Now note that

� Any vector in TpS can be written as a �u(p)+ b �v(p).

� Any vector in Tp~S~ can be written as a~�~u~(p~)+ b~�~v~(p~). Recall that p~= f(p).

Thus if M is the matrix representation of Dpf with respect to these bases, there holds

Dpf(a �u(p)+ b �v(p))= a~�~u~(p~)+ b~�~v~(p~)()

 
a~

b~

!
=M

�
a
b

�
: (1)

� The procedure.

i. Let �:U 7!R3 be a surface patch of S covering p: �(u0; v0)= p.

ii. Let �~:U~ 7!R3 be a surface patch of S~ covering f(p).

iii. Let F := (�~)¡1 � f ��:U 7!U~.

iv. We have

Dpf(a �u(p)+ b �v(p))= a~�~u~(p~)+ b~�~v~(p~)()

 
a~

b~

!
=DF (u; v)

�
a
b

�
: (2)

Here if F (u; v)= (F1(u; v); F2(u; v)), the matrix

DF =

�
F1;u F1;v
F2;u F2;v

�
: (3)

� Proof of the formula (2).

1. Let (t) :=�(u(t); v(t)) be a curve on S with (t0)= p. Let u0(t0)=a;v 0(t0)= b.
We see that

_(t0)= a �u(p)+ b �v(p): (4)

2. Consider the curve ~(t) := (u~(t); v~(t))=F (u(t); v(t)). Then the chain rule gives�
u~0(t0)
v~0(t0)

�
=DF (u(t0); v(t0)) �

�
u0(t0)
v 0(t0)

�
=DF (u(t0); v(t0)) �

�
a
b

�
(5)

1. For example, the correspondence between a map and the real locations is such a function.
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3. Finally notice that if (t) is a curve on S, with (t0)= p, then ~(t) := f((t))
is a curve on S~, with ~(t0)= f(p)= p~, and furthermore

~_(t0)=Dpf(_(t0)): (6)

Consequently a~= u~0(t0); b~= v~0(t0).

Summary.

The di�erential of f :S 7!S~ at p2S, denoted Dpf , is a linear map between the tangent
planes TpS and Tf(p)S~. If � and �~ are two surface patches on S;S~ respectively, containing
p; f(p) respectively, then the matrix representation of Dpf is the 2� 2 Jacobian matrix
DF (u0; v0) where F := (�~)¡1 � f � �, and �(u0; v0)= p. In other words, we have

Dpf(a �u+ b �v)= a~�~u+ b~�~v (7)

where all the �u; �v are evaluated at p and �~u; �~v at f(p), and 
a~

b~

!
=DF (u0; v0) �

�
a
b

�
: (8)

Example 1. (Stereographic projection) Let S~ be the sphere x12+ x2
2+ (x3¡ 1)2= 1

taking away the north pole (0;0;2). Let S be the plane x3=0. f :S 7!S~ be such that (0;0;2);
(u; v; 0); f(u; v; 0) lie on the same straight line. Then we have

f(u; v; 0)=

�
4 u

u2+ v2+4
;

4 v
u2+ v2+4

;
2 (u2+ v2)
u2+ v2+4

�
: (9)

Let p=(0; 0; 0). We will calculate Dpf .

i. Pick � covering p. We take �:U =R2 7!R3 de�ned as �(u; v)= (u; v; 0);

ii. Pick �~ covering f(p) and calculate (�~)¡1. We calculate f(p)= (0; 0; 0). Thus we can
take

�~:U~ = fu~2+ v~2< 1g 7!R3; �~(u~; v~)=
¡
u~; v~; 1¡ 1¡u~2¡ v~2

p �
: (10)

Thus (�~)¡1(x; y; z)= (x; y).

iii. Formulate F =(�~)¡1 � f ��. We have

F =(�~)¡1 � f :F (u; v)=
�

4u
u2+ v2+4

;
4 v

u2+ v2+4

�
: (11)

iv. Calculate DF (u0; v0) for �(u0; v0) = p. We have �(0; 0) = (0; 0; 0) = p and therefore
calculate

DF (0; 0)=

�
1 0
0 1

�
: (12)

The conclusion from the above calculation is that, if v= a �u+ b �v is a vector in TpS, then
Dpf(v)2Tf(p)S~ is given by a �~u+ b �~v.
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Exercise 1. Calculate DF at a di�erent point.

2. The Gauss Map
� Normal vector.

Definition 2. (Normal vector) A normal vector at p 2 S is a vector that is
perpendicular to all tangent vectors at p. A unit normal vector at p 2 S is a normal
vector at p with unit norm.

Let U �R2 and �:U 7!R3 be a surface patch of a surface S. Let p=�(u0; v0) for
some (u0; v0)2U . Then the normal vectors at p are given by c �u��v where c2R.
In particular, the unit normal vectors are given by

� �u��v
k�u��vk

: (13)

� Orientation.

� Informal definition. A surface S is orientable if and only if there is a
continuous function N :S 7!R3 such that at every p2S, N(p) is a unit normal
vector of S at p .

� There are surfaces that are not orientable.

� Every regular surface patch is orientable.

� The Gauss Map.

Definition 3. (Gauss Map) The Gauss map G:S 7!S2 is de�ned as G(p)=N(p),
the unit normal of the surface S at point p2S.

� Calculation of the Gauss map at p2S.

1. Let � be the surface patch map for S. Let �(u0; v0)= p.

2. Calculate

G(p)=N(u0; v0)=
�u(u0; v0)��v(u0; v0)
k�u(u0; v0)��v(u0; v0)k

: (14)

Example 4. Let S be the paraboloid z=x2+ y2. Calculate G(p) for p=(1; 1; 2).

Solution.

1. We take �(u; v)= (u; v; u2+ v2). We have �(1; 1)= (1; 1; 2)= p.

2. Calculate

�u = (1; 0; 2u)=)�u(1; 1)= (1; 0; 2);

�v = (0; 1; 2 v)=)�v(1; 1)= (0; 1; 2);

�u(1; 1)��v(1; 1) = (¡2;¡2; 1):
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Thus

G(1; 1; 2)=
�
¡2
3
;¡2

3
; 1

�
: (15)
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