
Lecture 4: Surfaces I: Surfaces in Calculus

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we give mathematical de�nition of surfaces as a compatible
collection of surface patches. We also de�ne the tangent plane and present
the surface area formula.

The required textbook sections are �4.1--4.4, �4.5 (before Definition
4.5.1). The optional textbook sections are �4.5 (De�nition 4.5.1 and after),
�5.1�5.6.

The examples in this note are mostly di�erent from examples in the textbook. Please
read the textbook carefully and try your hands on the exercises. During this please don't
hesitate to contact me if you have any questions.
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1. Parametrization of Surfaces

Mathematical representation of an arbitrary smooth surface is non-trivial.
We need to �break it up� into simple graph-like pieces, called surface patches,
and then �glue� these pieces together.

1.1. The di�culties in de�ning surfaces mathematically

� Two naive definitions.

� A surface is the graph of a �nice� function.

Example 1. The graph of f(x; y)=x2+ y2 de�nes a paraboloid.

Example 2. It is awkward to de�ne the unit sphere this way.

Remark 3. This de�nition is too narrow.

� A surface is the level set of a �nice� function.

Exercise 1. Let f(x; y) be a smooth function. Then there is a smooth function
F (x; y; z) such that the graph of f(x; y) is the zero levelset f(x; y; z):F (x; y; z) = 0g.

Example 4. The unit sphere is f(x; y; z)=0 for f(x; y; z)=x2+ y2+ z2¡1.

However, a direct consequence of Whitney's extension theorem1 is that, any
closed set in Rn is the zero level set of a smooth function f(x1; :::; xn), that is
for every closed set A, there is a smooth function f such that A= ff =0g.

1. Whitney, Hassler (1934), "Analytic extensions of functions de�ned in closed sets", Transactions of the Amer-
ican Mathematical Society, American Mathematical Society, 36 (1): 63�89, doi:10.2307/1989708.
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Technical Aside

¡ Closed set. A set A�Rn is closed if and only if it is the complement
of an open set in Rn.

� Complement of a set. The complement of a set A is another set
consisting of all points that are not in A. We usually denote
this set by Ac.

¡ Open set. A set A�Rn is open if and only if it is the union of open
balls.

� Union of sets. The union of a collection W of sets is another
set consisting of all points that belong to at least one set in
the collection. We denote the new set by [A2WA.

Exercise 2. Determine [i=11 (i; i+1).

Exercise 3. Determine [k=11
�
1¡ 1

k
; 1¡ 1

k+1

�
.

� Open ball. An �open ball� in Rn is the set of all points x2Rn

satisfying kx¡x0k<r for some x02Rn and r > 0.

Exercise 4. The union of open sets is still an open set.

Example 5. (Cantor set) Consider the following set F obtained through
an in�nite process:

i. Take the closed interval [0; 1]. Drop the middle third (1/3; 2/3).

ii. Take the remaining set [0; 1 / 3] [ [2 / 3; 1], drop third middle third
(1/9; 2/9); (7/9; 8/9).

iii. Repeat this ad in�nitum.

The remaining points form a in�nite closed set.

Exercise 5. Convince yourself that the Cantor set is in�nite and closed.

Example 6. (Sierpinski carpet) A Sierpinski carpet is an analog of Cantor
set in R2. We start from the unit square and repreatedly take away the middle
1/9.

Exercise 6. Describe the process more precisely.

What remains de�nitely does not �t our intuition of a �smooth surface�,
but it is the level set of a smooth function by Whitney's theorem.

Remark 7. This de�nition is too wide.

1.2. Surfaces

� Surface patches.

� The generalization of �graph�.

¡ Motivation from curves.
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We used to think of curves as graphs of a single variable function
f(x), but later generalize it to the �trace� of a vector function (x1(t); :::;
xn(t)).

¡ Generalization of graph.
Instead of considering the graph of a two variable function f(x; y),

we consider the �trace� of the vector function �(u; v)=(x(u; v); y(u; v);
z(u; v)).

� Surface patch.

Definition 8. (Surface patch)
A surface patch is a function �: U 7!R3 such that both � and its inverse

�¡1 are continuous, and � is bijective.

Technical Aside

¡ Such a function f is called a homeomorphism.

¡ Bijective. A function f :X 7!Y is called bijective if

i. f is one-to-one. That is f(x1)=/ f(x2) whenever x1=/ x2;

ii. f is onto. That is for every y 2 Y there is x 2 X such that
f(x)= y.

¡ Inverse function. When a function is bijective, we see that the map-
ping y 7! the particular x such that f(x)= y is also a function. We call
it the inverse function of f . Denoted f¡1. We note that f¡1:Y 7!X.

Exercise 7. What goes wrong if f is not bijective?

Remark 9. A surface patch is a �mathematical deformation� of a piece of the
�at plane into a curves surface in space.

Exercise 8. A graph of a function is a surface patch.

� Surfaces.

Definition 10. (Surface) A subset S of R3 is a surface if, for every point p2S,
there is an open set U in R2 and a surface patch � from U �R2 to S such that p2�(U).

Exercise 9. Compare with De�nition 4.1.1 of Textbook.

Remark 11. Thus a surface is a subset of R3 that can be covered with a collection
of surface patches. Such a collection is called an atlas of S.

� Examples of surfaces.

Example 12. (Graph) Let U �R2 and f :U 7!R be a smooth function. Then its
graph fx3= f(x1; x2)g is a surface.

Proof. Consider the surface patch (u; v) 7! (u; v; f(u; v)). �
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Example 13. (Sphere) See textbook Example 4.1.4.

Example 14. (Surface of revolution) Let f : (a; b) 7!R be a smooth positive
function. Its surface of revolution (around the x-axis) is de�ned as

f(x; y; z): y2+ z2= f(x)2g: (1)

To see that it is a surface, consider the atlas consisting of two surface patches:

(u; f(u) cos v; f(u) sin v); (u; v)2U := (a; b)� (0; 2�) (2)
and

(u; f(u) cos v; f(u) sin v); (u; v)2U := (a; b)� (¡�; �): (3)

Exercise 10. What about the surface of revolution obtained from rotating the graph of f
around the y-axis? Is it a surface? Why?

Example 15. (Level surfaces) Let f(x; y; z) be a smooth function. We have
seen that its level surface S := f(x; y; z): f(x; y; z)=0g may not be a smooth surface
in any reasonable sense. However we have the following result.

(Theorem 5.1.1 of Textbook) Assumerf(x; y;z)=/ 0 for every
(x; y; z)2S. Then S is a smooth surface.

1.3. Tangent planes

� Tangent vector and tangent plane.

Definition 16. (Definition 4.2.1 of Textbook) A surface patch �:U 7!R3 is
called regular if it is smooth and the vectors �u and �v are linearly independent at all
points (u; v)2U.

In the following we will always assume the surface under study to have an atlas
of regular surface patches. In fact, most of the times we will just focus on one single
surface patch.

Definition 17. (Definition 4.4.1 of Textbook) A tangent vector to a surface
S at point p2S is a tangent vector at p of a curve in S passing through p.

When we consider all the curves in S passing through p, we obtain a collection of
tangent vectors. This collection (together with the zero vector) forms a two-dimen-
sional linear vector space called �tangent plane� of S at p. Denoted TpS.

Exercise 11. Prove that if u; v are tangent vectors at p and a; b are arbitrary real numbers,
then a u+ b v is also a tangent vector at p .

Proposition 18. (Proposition 4.4.2) Let �: U 7! R3 be a patch of a surface S
containing a point p2S, and let (u; v) be coordinates in U. The tangent space to S at
p is the vector subspace of R3 spanned by the vectors �u and �v (the derivatives are
evaluated at the point (u0; v0)2U such that �(u0; v0)= p).

Remark 19. In other words, we can represent the collection of tangent vectors at p
as fa �u+ b �v: a; b2Rg.
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Let U �R2 and �:U 7!R3 be a surface patch of a surface S. Let p=�(u0; v0) for
some (u0; v0)2U . Then the tangent plane TpS=fa �u(u0; v0)+ b �v(u0; v0):a; b2Rg:

� Examples.

Example 20. (Graph) Let U �R2 and f :U 7!R be a smooth function. Then its
graph fx3= f(x1; x2)g is a surface. It is given by one surface patch (u; v; f(u; v)). As
a consequence, we have

�u=(1; 0; fu); �v=(0; 1; fv); (4)

and the tangent plane TpS at p=(u0; v0; f(u0; v0)) is given by

fa (1; 0; fu)+ b (0; 1; fv): a; b2Rg: (5)

2. Surface Area
The de�nition of surface area is subtle. However for the regular surfaces

considered in 348, there is a simple formula.

2.1. How to calculate surface area

u
v

x
y

z

(u; v)

(u+ �u; v+ �v)

�
u
v

�
!!!!!!!!!!�

0@ x
y
z

1A

��(u; v)+�u �u

��(u; v)+�v �v

�(u; v)

Figure 1. Stretching and twisting of of in�nitesimal rectangles.

The shaded rectangle in the (u;v)-plane, with area �u � �v, is �stretched� by the mapping
r to the shaded curvilinear parallelogram in the (x; y; z)-space. The sides of this paral-
lelogram are approximately ru �u and rv �v, giving its area to be about k�u� �vk �u � �v.
Summing the areas of all such curvilinear parallelograms up we reach the integral formulaZ

U

k�u��vkdudv: (6)

Intuitions about the surface area formula.
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Area of a surface patch: Z
U

k�u��vkdudv (7)

In particular, when the surface patch is given by a graph z= �(x; y) on U �R2. Then

S=

Z
U

1+ �x
2+ �y

2
p

dx dy: (8)

Example 21. Find the area of the part of z= x y that is inside x2+ y2=1.

Solution. We calculate

S=

Z
x2+y261

1+ zx
2+ zy

2
q

d(x; y)=
2�
3

¡
2 2
p

¡ 1
�
: (9)

Example 22. Find the surface area of the sphere x2+ y2+ z2=R2.

Solution. We use the parametrization

�(�;  )=

0@ R cos� cos 
R sin� cos 
R sin 

1A; U =
n
(�;  )j 0< �< 2�;¡�

2
< <

�
2

o
: (10)

Exercise 12. Note that as shown on page 72 of the textbook, one �slit� on the sphere is not covered.
Convince yourself that this is not a problem for the purpose of calculating surface area. Prove that this
is not a problem if you have learned the theory of Riemann integration on surfaces.

Then calculate

�u=

0@ ¡R sin� cos 
R cos� cos 

0

1A; �v=

0@ ¡R cos� sin 
¡R sin� sin 

R cos 

1A: (11)

This gives

S=

Z
D

R2 cos d(�;  )= 4 �R2: (12)

Example 23. Find the surface are of the torus �(u; v)= ((2+ cos u) cos v; (2+ cos u) sin v;
sinu), u; v 2 (0; 2 �).
Solution. We calculate

�u=(¡sinu cos v;¡sinu sin v; cos u); �v=(¡(2+ cosu) sin v; (2+ cosu) cos v; 0): (13)

Now

�u��v=¡(2+ cosu) (cos u cos v; cosu sin v; sinu) (14)

which leads to

k�u��vk=2+ cosu (15)

and

A =

Z
0

2� Z
0

2�

(2+ cos u) du dv

= 8�: (16)

Math 348 Fall 2017

7



2.2. The counterexample of Schwartz (optional)

�The example of Schwarz, ... , was the starting point of an extensive and fascinating literature. Still,
we do not possess as yet a satisfactory theory of the area of surfaces, ...�

�� Tibor Rado, 19432

� Gelbaum, B. R. and Olmsted, J. M. H., Counterexamples in Analysis , Chapter 11, Example 7.

Let

S= f(x; y; z)jx2+ y2=1; 06 z6 1g: (17)

Let m2N. De�ne 2m+1 circles:

Ck;m := S \
�
(x; y; z)j z= k

2m

�
; k=0; 1; 2; :::; 2m: (18)

Now let n2N. Pick on each Ck;m n points:

Pk;m;j :=

8>>><>>>:
�
cos

2 j �
n

; sin
2 j �
n

;
k
2m

�
k even�

cos
(2 j+1)�

n
; sin

(2 j+1)�
n

;
k
2m

�
k odd

; j=0; 1; :::; n¡ 1: (19)

Connecting this points in a natural manner we obtain 4m n congruent space triangles. It
can be calculated that the area of each triangle is

sin
�
�
n

��
1

4m2
+
�
1¡ cos

�
�
n

��
2
�
1/2

: (20)

Exercise 13. Prove the above formula.

Thus the area of the polyhedron inscribed in the cylinder is

Amn := 2�
sin(�/n)
�/n

�
1+4m2

�
1¡ cos

�
n

�
2
�
1/2
: (21)

Exercise 14. Prove that, as m;n!1,

a) the diameters of the triangles ¡!0;

b) The limit of Amn depends on how m;n¡!1. Furthermore for any s>2 � (including 1), there
is a strictly increasing function M :N 7!N such that

lim
n!1

AM(n);n= s: (22)

Note that the area of the cylinder is 2�.

Remark 24. See http://www.cut-the-knot.org/Outline/Calculus/SchwarzLantern.shtml
for a visualization of the construction.

Remark 25. (From (Lord) ) In 1868 J. A. Serret3 suggested the �obvious� generalization
of the natural method of �nding arc length to calculation of surface area:

2. Tibor Rado, What is the Area of a Surface?, The American Mathematical Monthly, Vol. 50, No. 3, Mar., 1943, pp. 139 - 141.

3. of Frenet-Serret frame in Di�erential Geometry.
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�Given a portion of a curved surface bounded by a curve C, we call the area of this surface
the limit S towards which the area of an inscribed polyhedral surface tends, where the inscribed
polyhedral surface is formed by triangular faces and is bounded by the polygonal curve G,
which limits the curve C�

�One must show that the limit S exists and that it is independent of the way in which the
faces of the inscribed surface decreases.�

The problem with this approach was �rst realized by H. A. Schwarz4, who wrote to
Italian mathematician Gennochi about this in 1880. Later in 1882 Gennochi's student Peano
annouced the same result in a course he taught. Around the same time Schwarz wrote to
Hermite about his example. Hermite published Schwarz's letter in his course notes, which
was published later than that of Peano's. Consequently there are disputes about priority.

4. Gesammelte Mathematische Abhandlungen, Vol. 2, p. 309. Berlin, Julius Springer, 1890.
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