

Math 348 Differential Geometry of Curves and Surfaces

Lecture 3 Curves in Calculus

Xinwei Yu

Sept. 12, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

- 1. How to Define a Curve Mathematically?
- 2. How to Measure Along a Curve?
- 3. What Can We Do With Naïve Application of Calculus?
- 4. Looking Back and Forward

Please do not hesitate to interrupt me if you have a question. .

How to Define a Curve Mathematically?

Mathematical Representations of Curves

- \cdot Level Set.
 - Motivation: Analytic geometry, graphs.
 - 2D. f(x, y) = 0.
 - 3D. $f_1(x, y, z) = f_2(x, y, z) = 0.$
 - nD?
- · Parametrization.
 - Motivation: Mechanics.
 - 2D. (x(t), y(t)).
 - 3D. (x(t), y(t), z(t)).
 - nD?
- What About Graphs in 2D?
 - y = f(x) is both.

Example

A straight line in \mathbb{R}^3 represented

- 1. through level sets.
- 2. through parametrization.

- · Level Set Representations.
 - Includes "non-curves". (Whitney's Theorem¹.)
 - In-efficient for theoretical study.
 - Efficient computational study (Level Set Method²).
- · Parametrization.
 - Includes "non-curves". (Space-filling curves, etc. Example: Hilbert curve³.)
 - In-efficient for computational study.
 - Efficient for theoretical study.
- Our Choice. Parametrization.

¹Wiki Page ²Wiki Page, One of the inventor's explanation. ³Wiki Page

Regular Curves

- **Parametrized Curve.** A parametrized curve in \mathbb{R}^n is a map $\gamma : (\alpha, \beta) \mapsto \mathbb{R}^n$, for some α, β with $-\infty \leq \alpha < \beta \leq \infty$.
- **Regular Curve.** A regular curve is a parametrized curve further satisfying
 - 1. $\gamma \in C^{\infty}$, that is γ is infinitely differentiable.
 - 2. $\dot{\gamma}(t) \neq 0$ at every $t \in (\alpha, \beta)$.
- Notable Things.
 - 1. $(\alpha, \beta) = \{t \in \mathbb{R} \mid \alpha < t < \beta\}.$
 - 2. Trace: The collection of points on a curve, i.e. $\gamma((\alpha, \beta))$.

Example

 $\gamma(t) = (\cos t, \sin t), t \in (0, 4\pi)$ is a regular curve, whose trace is the unit circle in the plane.

Note that $\gamma_1(t) = (\cos 2t, \sin 2t), t \in (-\infty, \infty)$ is a different regular curve, but with the same trace.

In the remaining of the course, "curve" = "regular curve".

Examples

Example

•
$$\gamma(t) = (t, t^2), t \in (0, \infty).$$

•
$$\gamma(t) = (t^2, t^4), t \in (0, \infty).$$

Example

1.
$$\gamma(t) = (a + r \cos t, b + r \sin t), t \in (-\infty, \infty);$$

2. $\gamma(t) = (x_0 + tu_0, y_0 + tv_0, z_0 + tw_0), t \in (0, \infty);$
3. $\gamma(t) = (t - \sin t, 1 - \cos t), t \in (0, 2\pi);$
4. $\gamma(t) = (3 \cos t, 4 \sin t, 5t), t \in (-\infty, \infty);$
5. Viviani's Curve (MathWorld Page).
 $\gamma(t) = (R \cos^2 t, R \cos t \sin t, R \sin t), \quad t \in (0, 2\pi).$

- · Differential! Geometry.
- First Order Derivative.
 - $\gamma(t) : (x(t), y(t), z(t)), t \in (\alpha, \beta).$
 - $\dot{\gamma}(t_0) = (\dot{x}(t_0), \dot{y}(t_0), \dot{z}(t_0)).$
 - Mechanics: $\gamma(t)$ is trajectory, t is time $\implies \dot{\gamma}(t_0)$ is velocity at time t_0 .
 - Geometry: $\dot{\gamma}(t_0)$ is a vector that is tangent to the curve.⁴
- Higher Order Derivatives.
 - Mathematics: $\ddot{\gamma}(t_0 = (\ddot{x}(t_0), \ddot{y}(t_0), \ddot{z}(t_0), \text{ etc..})$
 - Mechanics: Acceleration, etc..
 - Geometry: ???

⁴The vector may not be tangent to the trace of the curve...

How to Measure Along a Curve?

The Arc Length Formula

$$L = \int_a^b \|\gamma'(t)\| \,\mathrm{d}t.$$

 \cdot Motivation.

 $\mathsf{Curve} \leftrightarrow \mathsf{particle} \ \mathsf{trajectory} \quad \Longrightarrow \quad \mathsf{Arc} \ \mathsf{length} \leftrightarrow \mathsf{distance} \ \mathsf{travelled}.$

\cdot Mathematical Definition.

- · Idea. Approximate by polygonal curves.
- $L = \sup\{\text{Length of all possible polygonal approximations.}\}$
- · Proof.
 - Why is a proof necessary?
 - Proof itself optional. See lecture notes.

Example

- 1. The circumference of the unit circle;
- 2. The helix $(\cos t, \sin t, t), t \in (0, 2\pi)$;
- 3. The cycloid⁵ $(t \sin t, 1 \cos t), t \in (0, 2\pi)$.
- The Limacon of Pascal ⁶ of Pascal ((1+2cost)cost, (1+2cost)sint).
 - Arc length is independent of parametrization.

⁵MathWorld Page ⁶Wiki Page

The most convenient parametrization for the study of curves through calculus.

- **Definition.** An arc length parametrization of a curve γ is a parametrization $\gamma(s)$ such that $\|\dot{\gamma}(s)\| = 1$ at every s.
- How to parametrize by arc length. Let a curve γ be given.
 - 1. Calculate $\|\dot{\gamma}(t)\|$.
 - 2. Solve $\frac{dS(t)}{dt} = ||\dot{\gamma}(t)||$. s = S(t) is the new, arc length, parameter.
 - 3. Find the inverse function t = T(s).
 - 4. Arc length parametrization is $\gamma(T(s)) = (x(T(s)), y(T(s)), z(T(s)))$.

Example

Parametrize (cost, sint, t) by arc length.

What Can We Do With Naïve Application of Calculus?

Example

Let $\gamma(t)$ be a given curve. Then it is on a sphere centered at 0 if and only if $\dot{\gamma}(t) \cdot \gamma(t) = 0$ for every t.

Proof.

(Main idea)

- 1. $\frac{\mathrm{d}}{\mathrm{d}t} \|\gamma(t)\|^2 = 2\dot{\gamma}(t) \cdot \gamma(t).$
- 2. The conclusion follows.

Straight Lines

Example

Let $\gamma(t)$ be a given curve in \mathbb{R}^3 . Then it is part of a straight line passing the origin if and only if $\dot{\gamma}(t) \times \gamma(t) = 0$ for every t.

Proof.

(Main Idea)

• Only if. Let $\gamma(t)$ be a straight line. Then there is a constant vector b such that $\gamma(t) = f(t)b$ with f(t) a scalar function. Conclusion follows.

• If.

- 1. Let $b(t) = \gamma(t) / ||\gamma(t)||$.
- 2. Let $f(t) = ||\gamma(t)||$. 3. $\dot{\gamma}(t) \times \gamma(t) = f(t)\dot{b}(t) \times \gamma(t)$.
- 4. $\dot{b}(t) = 0$. Conclusion follows.

Planar Curves

Example

Let $\gamma(t)$ be a given curve. Then it lies in a plane passing 0 if and only if $(\gamma(t) \times \dot{\gamma}(t)) \cdot \ddot{\gamma}(t) = 0$ for every t.

Proof.

(Main Idea)

• Only if. There is a constant nonzero vector b such that $b \cdot \gamma(t) = 0$ for all t.

• If.

- · Case 1. $\gamma(t) \times \dot{\gamma}(t) = 0$. Conclusion follows from previous example.
- Case 2. $\gamma(t) \times \dot{\gamma}(t) \neq 0$.
 - 1. Let $b(t) = \gamma(t) \times \dot{\gamma}(t)$.
 - 2. Calculate $b(t) \times \dot{b}(t) = 0$.
 - 3. b = b(t) / ||b(t)|| is a constant vector satisfying $b \cdot \gamma(t) = 0$ for all t.
 - 4. Conclusion follows.

Looking Back and Forward

Summary

- Required Textbook Sections. §1.1, §1.2.
- Optional Textbook Sections. §1.3–§1.5.
- \cdot Definitions.
 - 1. Regular Curve.

A map $\gamma : (\alpha, \beta) \mapsto \mathbb{R}^n$, for some $-\infty \leq \alpha < \beta \leq \infty$, such that $\gamma \in C^{\infty}$, and $\dot{\gamma}(t) \neq 0$ for every *t*.

2. Tangent Vector.

The tangent vector of a curve $\gamma(t)$ at t_0 is $\dot{\gamma}(t_0)$.

- Formulas.
 - 1. Arc Length.

$$L = \int_a^b \left\| \gamma'(t) \right\| \mathrm{d}t.$$

- · Procedures.
 - 1. Arc Length Parametrization.
 - 1.1 Calculate $\|\dot{\gamma}(t)\|$.
 - 1.2 Solve $\frac{dS(t)}{dt} = \|\dot{\gamma}(t)\|$. s = S(t) is the new, arc length, parameter.
 - 1.3 Find the inverse function t = T(s).
 - 1.4 Arc length parametrization is $\gamma(T(s)) = (x(T(s)), y(T(s)), z(T(s)))$.

Surfaces in Calculus

- Mathematical representations of surfaces;
- Tangent planes;
- Measuring surface area.