Math 348 Differential Geometry of Curves and Surfaces

Lecture 2 Review of Pre-requisites

Xinwei Yu

Sept. 7, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

- 1. Pre-requisites to Classical Differential Geometry
- 2. Calculus of Multivariable Vector-valued Functions
- 3. Linear Algebra
- 4. Differential Equations

Please do not hesitate to interrupt me if you have a question.

Pre-requisites to Classical Differential Geometry

Classical Differential Geometry

- \cdot Objects to Study.
 - + Curves in \mathbb{R}^2 and \mathbb{R}^3 ;
 - Surfaces in \mathbb{R}^3 .
- Ultimate Goal. Understand curves and surfaces through quantities that can be calculated. Questions to answer:
 - When are two curves identical¹?
 - When are two surfaces identical?
 - When is a curve contained in a certain surface?
 - etc.
- · Idea.
 - Calculate using calculus.
- · Procedure.
 - 1. Represent curves and surfaces by functions;
 - 2. Study these functions by differentiation and integration;
 - 3. Interpret the results geometrically.

¹What do we mean by "identical"?

Multivariable Vector-valued Functions.

- Operations in the Euclidean space \mathbb{R}^n ;
- Functions between two Euclidean spaces \mathbb{R}^m and \mathbb{R}^n ;
- Geometric meanings of derivatives of these functions.

• Linear Algebra.

- Efficient representations of \mathbb{R}^n .
- · Linear transformations and their matrix representations;
- $\cdot\,$ Properties of matrices and how to manipulate them.

• Differential Equations².

- Solving simple ODEs;
- Basic theory of differential equations.

²Geometry by algebra leads to algebraic equations; Geometry by calculus leads to differential equations.

Calculus of Multivariable Vector-valued Functions

The Euclidean Space \mathbb{R}^n

• nD Euclidean Space.

- Represented by *n*-tuples of real numbers (coordinates) $(x_1, ..., x_n)$.
- $\cdot\,$ Original motivation: The "ambient" space where particles live in. 3
- Two Interpretations of \mathbb{R}^n .
 - Space for locations. $(x_1, ..., x_n)$ is a "point".
 - Space for velocities. $(v_1, ..., v_n)$ is a "vector".
 - Imagine at each point x in the location space \mathbb{R}^n , we could "overlay" a velocity space \mathbb{R}^n .
- $\cdot\,$ Understanding this distinction is crucial in DG.

³Their trajectories are curves; They may be restricted to surfaces.

\cdot Vectors.

Its members are called "vectors". The following are basic operations on vectors.

• Addition/Subtraction/Scalar Multiplication.

$$u \pm v = (u_1 \pm v_1, \ldots, u_n \pm v_n; \qquad au = (au_1, \ldots, au_n).$$

· Norm.

$$\|\mathbf{v}\| = \sqrt{\mathbf{v}_1^2 + \dots + \mathbf{v}_n^2}.$$

· Inner Product.

$$u \cdot v = u_1 v_1 + \cdots + u_n v_n.$$

• Cross Product. Let $u, v \in \mathbb{R}^3$.

$$u \times v = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

Geometric Meanings of Vector Operations

- Addition/Subtraction/Scalar Multiplication.
- · Norm.
- · Inner Product.

$$\cos\theta = \frac{u \cdot v}{\|u\| \, \|v\|}.$$

· Cross Product.

$$u \times v \perp u, \qquad u \times v \perp v,$$

 $\sin \theta = \frac{\|u \times v\|}{\|u\| \|v\|}.$

 $u \times v$ is a vector that is perpendicular to both u and v, its direction determined by the "right-hand-rule", with norm $||u|| ||v|| \sin \theta$ where θ is the angle between u and v.

\mathbb{R}^n as a "Location" Space: Measurements

 \cdot Distance.

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}.$$

- · Area.
 - Area is uniquely defined. If we agree on
 - 1. The unit square has area 1.
 - 2. The area of a disjoint union is the sum of the areas.
 - 3. Rigid movements does not change area
 - Area of triangles in \mathbb{R}^3 .

The area of the triangle

$$(0,0,0) - (x_1,x_2,x_3) - (y_1,y_2,y_3) - (0,0,0)$$

is $\frac{1}{2} \| X \times Y \|$.

- Volume.
 - Volume is also uniquely defined.
 - Volume of parallelopiped: $V = |(x \times y) \cdot z|$
- Moving with Velocity.

Functions

 \cdot Notation.

$$f: \mathbb{R}^m \mapsto \mathbb{R}^n.$$

- Linear Transformations⁴.
 - Definition: For all $a, b \in \mathbb{R}$,

$$f(ax + by) = af(x) + bf(y)$$

• NO.1 Property: Can be represented by matrices.

$$f(x) = Ax.$$

- Bilinear Forms⁵. $f : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$.
 - Definition: For all $a, b \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^n$,

 $B(au+bw,v) = aB(u,v)+bB(w,v); \quad B(u,aw+bv) = aB(u,w)+bB(u,v).$

• NO.1 Property: Can be represented by matrices.

$$B(u,v)=u\cdot Av.$$

⁴The most important function.

⁵The second most important function.

Differentiate $f : \mathbb{R}^m \mapsto \mathbb{R}^n$ at a point $x_0 \in \mathbb{R}^m$

· Recall definition.

$Df(x_0)$ is a linear transformation!

- $Df(x_0)$.
 - A linear transformation from \mathbb{R}^m to \mathbb{R}^n ;
 - Not the original "location" \mathbb{R}^m and \mathbb{R}^n , but a pair of "velocity" \mathbb{R}^m and \mathbb{R}^n , attached to the two locations spaces at x_0 and $f(x_0, respectively;$
 - $\cdot\,$ The "Jacobian matrix" is its matrix representation.
 - Directional derivative:

$$\frac{\partial f}{\partial v}(x) = Df(x)(v).$$

More on Differentiation

 \cdot Chain Rule.

$$\frac{\partial (g \circ f)_i}{\partial x_j} = \sum_{k=1}^n \frac{\partial g_i}{\partial y_k} (f(x)) \frac{\partial f_k}{\partial x_j} (x).$$

- · Second Order Derivative.
 - A bilinear form.
 - Represented by the Hessian matrix.
- Taylor Expansion.

$$f(x + v) = f(x) + Df(x)(v) + \frac{1}{2}D^2f(x)(v, v) + R.$$

Example

Let $f(x, y) = e^{xy}$. Its Taylor expansion at (0, 0) to second order is

$$f(u,v) = 1 + uv + R.$$

Linear Algebra

Linear (In)dependence

 \cdot Representation of the velocity space.

Through a basis v_1, \ldots, v_k : $v = a_1v_1 + \cdots + a_kv_k$.

 $\cdot\,$ Represent the whole space.

 $k \ge n$.

• No redundancy. :

Each v_i is "independent" from all other v_j 's.

- · Linear dependence/independence.
 - Linear dependence of v_1, \ldots, v_k : There are $a_1, \ldots, a_k \in \mathbb{R}$, not all zero, such that

 $a_1\mathbf{v}_1+\cdots+a_k\mathbf{v}_k=\mathbf{0}.$

- Let v_1, \ldots, v_k be linearly dependent. Then there is a v_i that is a linear combination of the other v_j 's.
- Linearly independent = Not linearly dependent.
- Linear independence of $v_1, \ldots, v_k \Longrightarrow k \leq n$.

Determinant

- The unique function on $n \times n$ matrices such that
 - 1. Takes value 1 for the identity matrix;
 - 2. Changes sign when two columns are switched;
 - 3. Is a linear function for each column.
- Formulas for 2 \times 2 and 3 \times 3 matrices.
- Geometric meaning. Volume of parallelopiped.
- \cdot Relation to linear (in)dependence.

Let $v_1, \ldots, v_n \in \mathbb{R}^n$. Let V be the matrix with v_1, \ldots, v_n as columns. Then the vectors are linearly dependent if and only if det V = 0.

- Most properties of an $n \times n$ matrix A are revealed through its eigenvalues.
- Most of the remaining properties can be studied through also looking at its eigenvectors.
- $\cdot\,$ Calculation of eigenvalues.

Solve det $\lambda I - A = 0$.

• **Eigenvectors.** There are one or more eigenvectors associated with each eigenvalue. To calculate, solve

$$(\lambda l - A)v = 0$$

where λ is an eigenvalue.

• **Diagonalization.** If there are *n* linearly independent eigenvectors v_1, \ldots, v_n , then $A = V\Lambda V^{-1}$. *V*: Matrix with columns v_i . Λ : Diagonal matrix of the eigenvalues.

Differential Equations

The Simplest ODEs

Example

The solution to

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t), \qquad x(t_0) = x_0$$

is
$$x(t) = x_0 + \int_{t_0}^t f(s) \mathrm{d}s.$$

Example

The solution to

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) + cx(t) = f(t), \qquad x(0) = x_0$$

is

$$x(t) = e^{-ct}x_0 + \int_0^t e^{c(s-t)}f(s)\mathrm{d}s.$$

· ODE System.

$$\begin{aligned} \frac{\mathrm{d}x_1}{\mathrm{d}t} &= f_1(x_1, \dots, x_n), \qquad x_1(0) = x_{01} \\ \vdots &\vdots &\vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} &= f_n(x_1, \dots, x_n), \qquad x_n(0) = x_{01} \end{aligned}$$

• Existence and Uniquenss.

The solution exists and is unique if *f* is differentiable with continuous derivatives.

 \cdot Explicit solution when f is linear.

Curves in Calculus

- Mathematical representations of curves;
- Tangent vectors;
- Measuring arc length for curves;
- Arc length parametrization.