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Pre-requisites to Classical
Differential Geometry



Classical Differential Geometry

• Objects to Study.
• Curves in R2 and R3;
• Surfaces in R3.

• Ultimate Goal. Understand curves and surfaces through
quantities that can be calculated. Questions to answer:

• When are two curves identical1?
• When are two surfaces identical?
• When is a curve contained in a certain surface?
• etc.

• Idea.
• Calculate using calculus.

• Procedure.
1. Represent curves and surfaces by functions;
2. Study these functions by differentiation and integration;
3. Interpret the results geometrically.

1What do we mean by ”identical”?
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Pre-requisites

• Multivariable Vector-valued Functions.
• Operations in the Euclidean space Rn;
• Functions between two Euclidean spaces Rm and Rn;
• Geometric meanings of derivatives of these functions.

• Linear Algebra.
• Efficient representations of Rn.
• Linear transformations and their matrix representations;
• Properties of matrices and how to manipulate them.

• Differential Equations2.
• Solving simple ODEs;
• Basic theory of differential equations.

2Geometry by algebra leads to algebraic equations; Geometry by calculus leads to
differential equations.
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Calculus of Multivariable
Vector-valued Functions



The Euclidean Space Rn

• nD Euclidean Space.
• Represented by n-tuples of real numbers (coordinates) (x1, ..., xn).
• Original motivation: The ”ambient” space where particles live in.3

• Two Interpretations of Rn.
• Space for locations. (x1, ..., xn) is a ”point”.
• Space for velocities. (v1, ..., vn) is a ”vector”.
• Imagine at each point x in the location space Rn, we could
”overlay” a velocity space Rn.

• Understanding this distinction is crucial in DG.

3Their trajectories are curves; They may be restricted to surfaces.
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Rn as a ”Velocity” Space

• Vectors.
Its members are called ”vectors”. The following are basic

operations on vectors.
• Addition/Subtraction/Scalar Multiplication.

u± v = (u1 ± v1, . . . ,un ± vn; au = (au1, . . . ,aun).

• Norm.
∥v∥ =

√
v21 + · · ·+ v2n.

• Inner Product.
u · v = u1v1 + · · ·+ unvn.

• Cross Product. Let u, v ∈ R3.

u× v = (u2v3 − u3v2,u3v1 − u1v3,u1v2 − u2v1).
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Geometric Meanings of Vector Operations

• Addition/Subtraction/Scalar Multiplication.
• Norm.
• Inner Product.

cos θ =
u · v

∥u∥ ∥v∥ .

• Cross Product.
u× v⊥u, u× v⊥v.

sin θ =
∥u× v∥
∥u∥ ∥v∥ .

u× v is a vector that is perpendicular to both u and v, its
direction determined by the ”right-hand-rule”, with norm
∥u∥ ∥v∥ sin θ where θ is the angle between u and v.
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Rn as a ”Location” Space: Measurements

• Distance.

d(x, y) =
√
(x1 − y1)2 + · · ·+ (xn − yn)2.

• Area.
• Area is uniquely defined. If we agree on

1. The unit square has area 1.
2. The area of a disjoint union is the sum of the areas.
3. Rigid movements does not change area

• Area of triangles in R3.
The area of the triangle

(0, 0, 0)− (x1, x2, x3)− (y1, y2, y3)− (0, 0, 0)

is 1
2 ∥x× y∥.

• Volume.
• Volume is also uniquely defined.
• Volume of parallelopiped: V = |(x× y) · z|

• Moving with Velocity.
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Functions

• Notation.
f : Rm 7→ Rn.

• Linear Transformations4.
• Definition: For all a, b ∈ R,

f(ax+ by) = af(x) + bf(y)

• NO.1 Property: Can be represented by matrices.

f(x) = Ax.

• Bilinear Forms5. f : Rn × Rn 7→ R.
• Definition: For all a, b ∈ R and u, v,w ∈ Rn,

B(au+bw, v) = aB(u, v)+bB(w, v); B(u, aw+bv) = aB(u,w)+bB(u, v).

• NO.1 Property: Can be represented by matrices.

B(u, v) = u · Av.
4The most important function.
5The second most important function.
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Differentiation

Differentiate f : Rm 7→ Rn at a point x0 ∈ Rm

• Recall definition.
Df(x0) is a linear transformation!

• Df(x0).
• A linear transformation from Rm to Rn;
• Not the original ”location” Rm and Rn, but a pair of ”velocity” Rm

and Rn, attached to the two locations spaces at x0 and f(x0,
respectively;

• The ”Jacobian matrix” is its matrix representation.
• Directional derivative:

∂f
∂v (x) = Df(x)(v).
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More on Differentiation

• Chain Rule.
∂(g ◦ f)i

∂xj
=

n∑
k=1

∂gi
∂yk

(f(x))∂fk
∂xj

(x).

• Second Order Derivative.
• A bilinear form.
• Represented by the Hessian matrix.

• Taylor Expansion.

f(x+ v) = f(x) + Df(x)(v) + 1
2D

2f(x)(v, v) + R.

Example
Let f(x, y) = exy. Its Taylor expansion at (0, 0) to second order is

f(u, v) = 1+ uv+ R.
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Linear Algebra



Linear (In)dependence

• Representation of the velocity space.
Through a basis v1, . . . , vk: v = a1v1 + · · ·+ akvk.

• Represent the whole space.
k ⩾ n.

• No redundancy. :
Each vi is ” independent” from all other vj’s.

• Linear dependence/independence.
• Linear dependence of v1, . . . , vk: There are a1, . . . , ak ∈ R, not all
zero, such that

a1v1 + · · ·+ akvk = 0.

• Let v1, . . . , vk be linearly dependent. Then there is a vi that is a
linear combination of the other vj’s.

• Linearly independent = Not linearly dependent.
• Linear independence of v1, . . . , vk =⇒ k ⩽ n.
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Determinant

• The unique function on n× n matrices such that
1. Takes value 1 for the identity matrix;
2. Changes sign when two columns are switched;
3. Is a linear function for each column.

• Formulas for 2× 2 and 3× 3 matrices.
• Geometric meaning. Volume of parallelopiped.
• Relation to linear (in)dependence.

Let v1, . . . , vn ∈ Rn. Let V be the matrix with v1, . . . , vn as
columns. Then the vectors are linearly dependent if and only if
det V = 0.
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Eigenvalues and Eigenvectors

Most properties of an n× n matrix A are revealed
through its eigenvalues.

Most of the remaining properties can be studied
through also looking at its eigenvectors.

• Calculation of eigenvalues.
Solve detλI− A = 0.

• Eigenvectors. There are one or more eigenvectors associated
with each eigenvalue. To calculate, solve

(λI− A)v = 0

where λ is an eigenvalue.
• Diagonalization. If there are n linearly independent
eigenvectors v1, . . . , vn, then A = VΛV−1. V: Matrix with columns
vi. Λ: Diagonal matrix of the eigenvalues.
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Differential Equations



The Simplest ODEs

Example
The solution to

dx
dt = f(t), x(t0) = x0

is x(t) = x0 +
∫ t
t0 f(s)ds.

Example
The solution to

dx
dt (t) + cx(t) = f(t), x(0) = x0

is
x(t) = e−ctx0 +

∫ t

0
ec(s−t)f(s)ds.
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Some ODE Theory

• ODE System.

dx1
dt = f1(x1, . . . , xn), x1(0) = x01
...

...
...

dxn
dt = fn(x1, . . . , xn), xn(0) = x01

• Existence and Uniquenss.
The solution exists and is unique if f is differentiable with

continuous derivatives.
• Explicit solution when f is linear.
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See You Tuesday!

Curves in Calculus

• Mathematical representations of curves;
• Tangent vectors;
• Measuring arc length for curves;
• Arc length parametrization.
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