Math 348 Differential Geometry of Curves and Surfaces

Lecture 1 Introduction

Xinwei Yu

Sept. 5, 2017

CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta

- 1. Course Information
- 2. Before Classical Differential Geometry
- 3. Classical DG: Upgrade to Calculus
- 4. Beyond Classical Differential Geometry

Course Information

Course Organization

Instructor.

Xinwei Yu; CAB 527; xinwei2@ualberta.ca;

· Course Webpage.

- http://www.math.ualberta.ca/ xinweiyu/348.A1.17f
- We will not use eClass.

· Getting Help.

- 1. Office Hours. TBA.
- 2. Appointments.
- 3. Emails.
- 4. It is a good idea to form study groups.

Evaluation

· Homeworks.

9 HWs; 20%; Worst mark dropped; No late HW. Due dates:

9/22; 9/29; 10/6; 10/20; 10/27; 11/3; 11/10; 12/1; 12/8. 12:00 (noon) in assignment box (CAB 3rd floor)

· Midterms.

30%; 10/5; 11/9. One hour. In class. No early/make-up midterms.

• Final Exam. Tentative.

50%; 12/14 @9a. Two hours.

$$\geq 50\% \Longrightarrow \geq D; \geq 90\% \Longrightarrow \geq A.$$

Resources

\cdot Textbook.

- Andrew Pressley, Elementary Differential Geometry, 2nd Ed., Springer, 2010.
- · Reference books.
 - Most books calling themselves "Introductory DG", "Elementary DG", or "Classical DG".
- \cdot Online notes.
 - Lecture notes (updated from Math 348 2016 Notes)
 - Theodore Shifrin lecture notes.
 - Xi Chen lecture notes for Math 348 Fall 2015.
- \cdot Online videos.
 - · Most relevant: Differential Geometry Claudio Arezzo (ICTP Math).
 - Many more on youtube etc..

Geometry, Differential

\cdot Geometry.

- Originally, "earth measure".
- More precisely, study of shapes.¹
- · Differential.
 - Calculus is (somehow) involved.
- · Classical Differential Geometry.
 - The study of shapes, such as curves and surfaces, using calculus.
 - $\cdot \, pprox$ Math 348.
- Math 348 Plan.
 - Weeks 1--3. Curves and surfaces in calculus.
 - \cdot Weeks 4--6. Curves in \mathbb{R}^2 and $\mathbb{R}^3,$ measurements on surfaces.
 - Weeks 7--13. Curvatures of surfaces.

¹Curves and surfaces-precise meaning later-in Math 348.

Before Classical Differential Geometry

Geometry Before Calculus

\cdot Prehistory.

- Area/volume of simple shapes.
- + Rough estimates of π . ²
- Examples of Pythagorean triples.

· Greek Geometry.

- Complete understanding of straight lines and circles (Euclid; Appollonius; Archimedes).
- Restricted to straight lines and perfect circles.
- \cdot Analytic Geometry.
 - Geometry powered by (polynomial) algebra.
 - No longer restricted to straight lines and circles.

²It may nor may not be understood that π is a single number, e.g., the "perimeter π " may be different from the "area π " or the "volume π ".

Geometry as Foundation of Mathematics

$\cdot\,$ The Evolution of Foundations of Mathematics.

Non-exist $\xrightarrow{c. 500 \text{ B.C.}}$ Number Theory $\xrightarrow{c. 300 \text{ B.C.}}$ Geometry $\xrightarrow{c. 1700}$ Algebra

· Geometry as Foundation.

- Number: length; Square: Area; Cubic: Volume. ³
- Geometric algebra.
 - Euclid: General quadratic equations;
 - · Appollonius, Omar Khayyam, etc.: Many cubic equations;
 - Newton: Still tried to argue through geometry
 - Examples: See e.g. "Taming the Unknown: A History of Algebra from Antiquity to the Early Twentieth Century" by Katz and Parshall.

³Higher powers: essentially meaningless.

• Algebra.

• "al-jabr": Restoration. Example:

$$3x + 2 = 4 - 2x \Longrightarrow 5x + 2 = 4.$$

- Great development between 500 A.D. and 1500 A.D.
- Relation to geometry: Graphs and Equations of polynomials.
- \cdot Analytic Geometry.
 - "analytic": pretend the unknown is known.4
 - "Algebraic geometry" instead of "geometric algebra".

⁴No relation to calculus!

The Success and Limitation of Analytic Geometry

· Key Idea.

Relate properties of geometric shapes to algebraic properties of appropriate algebraic objects.

· Procedure.

- 1. Represent geometric shapes algebraically.
- 2. Study the algebraic equations, i.e., (kind of) solve them.
- 3. Interpret the results geometrically.
- \cdot No longer restricted to conic curves.

Limitation

Polynomial equations are difficult/impossible to solve.

Classical DG: Upgrade to Calculus

• What is Calculus.

- Calculus: Stones used in Roman abacus.⁵
- Newton: A new kind of geometry for general curves and surfaces.
- Lagrange: A generalized algebra for polynomials of infinite degree.

· Key Ingredients.

- 1. One Object: Function.
- 2. Two Operations: Differentiation, Integration.

⁵Wiki: Roman abacus

Classical Differential Geometry

$\cdot\,$ Procedure.

- 1. Represent curves and surfaces as functions;
- 2. Study these functions through differentiation and integration;
- 3. Relate the results to properties of the curves and surfaces.
- \cdot Fundamental Question.

How to classify curves and surfaces. $^{\rm 6}$

- 348 Plan Revisited.
 - Weeks 1--3. Representation by functions. Curves and surfaces in calculus.
 - Weeks 4--6. Simple properties from differentiation and integration. Curves in \mathbb{R}^2 and $\mathbb{R}^3,$ measurements on surfaces.
 - Weeks 7--13. Attempts to answer the fundamental question. Curvatures of surfaces.

⁶Compare with the fundamental issue in Euclidean geometry: congruence.

Beyond Classical Differential Geometry

Modern Geometries

• Modern Differential Geometry.

- Higher dimensions;
- No ambient Euclidean space.
- · Geometric Measure Theory.
 - More general shapes than curves and surfaces.
- \cdot Topology.
 - Global properties.
- · Algebraic Geometry.
 - Geometry via modern algebra.
- · Discrete Differential Geometry.
 - Geometry for computers.
- · etc.

- · Mechanics.
- · Image Processing.
- · Computer Graphics.
- Biology.
- \cdot And many more.

See you Thursday!

• Review of Multivariable Calculus.

- 1. Vectors;
- 2. Functions;
- 3. Differentiation.

• Review of Linear Algebra.

- 1. Linear transformations and matrices;
- 2. Linear dependence/independence.

$\cdot\,$ Review of Differential Equations.

- 1. Basic solution techniques;
- 2. Basic existence/uniqueness theories.

Welcome to Math 348, and

let's all have a successful semester!