SOLUTIONS TO HOMEWORK 6

(Total 20 pts; Due Oct. 27 12pm)

QUESTION 1. (10 PTS) Consider the surface patch $\sigma(u, v) = (u, 2v, uv)$. Calculate $H, K, \kappa_1, \kappa_2, t_1, t_2$ at p = (1, 2, 1).

Solution. $p = (1, 2, 1) = \sigma(1, 1)$.

1. We calculate the first fundamental form

$$\sigma_u = (1, 0, v) \xrightarrow{u=v=1} (1, 0, 1), \qquad \sigma_v = (0, 2, u) \xrightarrow{u=v=1} (0, 2, 1)$$
 (1)

$$2 du^2 + 2 du dv + 5 dv^2. (2)$$

2. We calculate the second fundamental form

$$N = \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|} = \frac{1}{3} (-2, -1, 2). \tag{3}$$

$$\sigma_{uu} = \sigma_{vv} \xrightarrow{u=v=1} 0, \qquad \sigma_{uv} = \sigma_{vu} \xrightarrow{u=v=1} (0,0,1). \tag{4}$$

Differential Geometry of Curves & Surfaces

Thus the second fundamental form is

$$\frac{4}{3} \, \mathrm{d}u \, \mathrm{d}v. \tag{5}$$

3. Principal curvatures solve

$$\det \left[\begin{pmatrix} 0 & \frac{2}{3} \\ \frac{2}{3} & 0 \end{pmatrix} - \lambda \begin{pmatrix} 2 & 1 \\ 1 & 5 \end{pmatrix} \right] = 0.$$
(6)

This becomes

$$10 \lambda^2 - \left(\lambda - \frac{2}{3}\right)^2 = 0 \Longrightarrow \kappa_{1,2} = \frac{2}{3\left(1 \pm \sqrt{10}\right)}.$$
 (7)

4. H and K.

We have

$$H = \frac{\kappa_1 + \kappa_2}{2} = -\frac{2}{27}; \qquad K = \kappa_1 \,\kappa_2 = -\frac{4}{81}.$$
 (8)

5. t_1 and t_2 . Solve

$$\left[\left(\begin{array}{cc} 0 & \frac{2}{3} \\ \frac{2}{3} & 0 \end{array} \right) - \kappa_i \left(\begin{array}{cc} 2 & 1 \\ 1 & 5 \end{array} \right) \right] \left(\begin{array}{c} a_i \\ b_i \end{array} \right) = 0.$$
(9)

We have

$$\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = c_1 \begin{pmatrix} \sqrt{5} \\ \sqrt{2} \end{pmatrix}, \qquad \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = c_2 \begin{pmatrix} -\sqrt{5} \\ \sqrt{2} \end{pmatrix}. \tag{10}$$

Requiring $||t_1|| = ||t_2|| = 1$ we see that $c_1 = (20 + 2\sqrt{10})^{-1/2}$ and $c_2 = (20 - 2\sqrt{10})^{-1/2}$. Thus

$$t_1 = (20 + 2\sqrt{10})^{-1/2} \left(\sqrt{5} \sigma_u + \sqrt{2} \sigma_v\right) = (20 + 2\sqrt{10})^{-1/2} \begin{pmatrix} \sqrt{5} \\ 2\sqrt{2} \\ \sqrt{5} + 2\sqrt{2} \end{pmatrix}, \tag{11}$$

$$t_2 = \left(20 - 2\sqrt{10}\right)^{-1/2} \begin{pmatrix} -\sqrt{5} \\ 2\sqrt{2} \\ -\sqrt{5} + 2\sqrt{2} \end{pmatrix}. \tag{12}$$

QUESTION 2. (5 PTS) Let γ be a curve in a surface S. Assume that at every $p \in \gamma$

- i. $\dot{\gamma}(p)$ is parallel to the principal vector t_1 ;
- ii. the angle between the osculating plane and T_pS is fixed;
- iii. the normal curvature $\kappa_n \neq 0$.

Prove that γ is a plane curve. (Hint: Prove that $\dot{N}_S \parallel T$, then calculate $\frac{d}{ds}(N_S \cdot B)$.)

Proof. Let $\gamma(s) = \sigma(u(s), v(s))$ and let s be the arc length parameter. As $\dot{\gamma}$ is parallel to t_1 , we have

$$\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \kappa_1 \begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} \tag{13}$$

which leads to (let $N_S(s)$ be the surface normal along γ)

$$-\dot{N}_{S} = (a_{11}\sigma_{u} + a_{12}\sigma_{v})\dot{u} + (a_{21}\sigma_{u} + a_{22}\sigma_{v})\dot{v} = \kappa_{1}(\sigma_{u}\dot{u} + \sigma_{v}\dot{v}) = \kappa_{1}\dot{\gamma}.$$
(14)

Thus

$$\dot{N}_S = -\kappa_1 T. \tag{15}$$

On the other hand, by assumption we have $N_S \cdot B = \text{constant}$. Therefore

$$0 = \frac{\mathrm{d}}{\mathrm{d}s}(N_S \cdot B) = -\kappa_1 T \cdot B - \tau N_S \cdot N = -\tau N_S \cdot N. \tag{16}$$

Now recall that

$$\kappa N = \kappa_n N_S + \kappa_g (N_S \times T) \Longrightarrow \kappa_n = \kappa N \cdot N_S. \tag{17}$$

Thus $\kappa_n \neq 0 \Longrightarrow \kappa \neq 0, N \cdot N_S \neq 0$. Consequently $\tau = 0$ and γ is therefore a plane curve. \square

QUESTION 3. (5 PTS) Let S_1, S_2 be two surfaces. Let the curve γ be their intersection. Let $p \in \gamma$. Let the normal curvatures at p of S_i along γ be $\kappa_n^{(i)}$, i = 1, 2. Let θ be the angle between the surface normals at p. Prove that

$$\kappa^2 \sin^2 \theta = (\kappa_n^{(1)})^2 + (\kappa_n^{(2)})^2 - 2\kappa_n^{(1)} \kappa_n^{(2)} \cos \theta.$$
 (18)

(Hint: Prove that $\kappa_n^{(i)} = \kappa \cos \theta_i$)

Proof. Let N_i , i = 1, 2, be the surface normals. Let θ_i be the counter-clockwise angle from the curve normal N to N_i . We have

$$\kappa N = \kappa_n^{(i)} N_i + \kappa_g^{(i)} (N_i \times T) \Longrightarrow \kappa_n^{(i)} = \kappa N \cdot N_i = \kappa \cos \theta_i.$$
 (19)

As $N_1, N_2, N \perp T$, the three normal vectors lies in the same plane.

Now let θ be the counter-clockwise angle from N_1 to N_2 . Therefore by assumption $\theta_1 + \theta - \theta_2 = 2 k \pi$ for some integer k.¹ Letting $\theta' := 2 k \pi - \theta = \theta_1 - \theta_2$, we calculate (note that $\cos \theta' = \cos \theta$)

$$(\kappa_n^{(1)})^2 + (\kappa_n^{(2)})^2 - 2\kappa_n^{(1)}\kappa_n^{(2)}\cos\theta = \kappa^2 \left[\cos^2\theta_1 + \cos^2\theta_2 - 2\cos\theta_1\cos\theta_2\cos\theta'\right]$$

$$= \kappa^2 \left[\cos\theta_1 \left(\cos(\theta_2 + \theta') - \cos\theta_2\cos\theta'\right)\right]$$

$$+\kappa^2 \left[\cos\theta_2 \left(\cos(\theta_1 - \theta') - \cos\theta_1\cos\theta'\right)\right]$$

$$= \kappa^2 \left[-\cos\theta_1\sin\theta_2 + \cos\theta_2\sin\theta_1\right]\sin\theta'$$

$$= \kappa^2 \sin^2\theta' = \kappa^2 \sin^2\theta. \tag{20}$$

In the last equality we have used $\sin \theta' = -\sin \theta$.

^{1.} From N to N_1 is θ_1 , from N_1 to N_2 is θ , and from N_2 to N is $-\theta_2$. As we are back to N, the total angle must be an integer multiple of 2π .