HOMEWORK 6

(Total 20 pts; Due Nov. 3 12pm)

QUESTION 1. (10 PTS) Consider the surface patch $\sigma(u, v) = (u, 2v, uv)$. Calculate $H, K, \kappa_1, \kappa_2, t_1, t_2$ at p = (1, 2, 1).

QUESTION 2. (5 PTS) Let γ be a curve in a surface S. Assume that at every $p \in \gamma$

- *i.* $\dot{\gamma}(p)$ *is parallel to the principal vector* t_1 *;*
- ii. the angle between the osculating plane and T_pS is fixed;
- iii. the normal curvature $\kappa_n \neq 0$.

Prove that γ is a plane curve. (Hint: Prove that $\dot{N}_S \parallel T$, then calculate $\frac{d}{ds}(N_S \cdot B)$.)

QUESTION 3. (5 PTS) Let S_1, S_2 be two surfaces. Let the curve γ be their intersection. Let $p \in \gamma$. Let the normal curvatures at p of S_i along γ be $\kappa_n^{(i)}$, i = 1, 2. Let θ be the angle between the surface normals at p. Prove that

$$\kappa^2 \sin^2 \theta = \left(\kappa_n^{(1)}\right)^2 + \left(\kappa_n^{(2)}\right)^2 - 2\,\kappa_n^{(1)}\,\kappa_n^{(2)}\cos\theta. \tag{1}$$

(*Hint: Prove that* $\kappa_n^{(i)} = \kappa \cos \theta_i$)