HOMEWORK 5

(TOTAL 20 PTS; DUE OCT. 27 12PM)

QUESTION 1. (5 PTS) Consider the surface patch $\sigma(u, v) = (u^3 v, u^2 + v^2, v)$. Calculate its second fundamental form at p = (1, 2, 1).

QUESTION 2. (10 PTS) Let S be a surface patch.

a) (5 PTS) Prove that the normal curvature at $p \in S$ in the direction $w \in T_pS$ is

$$\kappa_n = \frac{\langle \langle w, w \rangle \rangle_{p,S}}{\langle w, w \rangle_{p,S}} \tag{1}$$

b) Let the first and second fundamental forms of S be $(1 + v^2) du^2 + 2 u v du dv + (1 + u^2) dv^2$ and $\frac{2 du dv}{\sqrt{1 + u^2 + v^2}}$ respectively. Calculate the normal curvature at point $\sigma(1, 1)$ in the direction $\sigma_u + \sigma_v$.

QUESTION 3. (5 PTS) Let γ be a curve on a surface S. Let $p \in \gamma$. Assume that the osculating plane of γ at p coincides with T_pS . Prove that the normal curvature of S at p in the direction $\dot{\gamma}$ is zero.