Math 348 Fall 2017

SOLUTIONS TO HOMEWORK 3
(Total 20 pts; Due Oct. 13 12pm)

QUESTION 1. (10 pts) Let vy(t) = (t,t%t3). Calculate T(0), N(0), B(0), x(0), 7(0).
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Differential Geometry of Curves & Surfaces

QUESTION 2. (5 PTS) Let « be a curve such that its osculating plane (the plane passing p €
and spanned by T(p) and N(p)) passes a fixed point. Prove that «y is a planar curve.

Solution. Denote the fixed point by 7. Then we have

B(s) - (v(s) = %) =0. (1)
Differentiating this we obtain
B(s)- (7(s) = 70) + B(s) - T(s) = 0= —7N(s) - (7(s) = 0) =0. (2)
There are two cases.
i. 7=0. Then 7 is planar.
ii. 7%0. Then
N(s) - (7(s) = 70) =0. (3)

Differentiating this we have
N(s)- (7(s) =70) + N(s) - T(s) =0 (4)
which gives
(= T+7B)-(7(s) = 70) =0. (5)
Thanks to (1) we have
£ T-(7(s) =) =0 (6)
There are two cases.

a) k=0. Then + is a straight line and is planar.

b) k#0. Then T (v(s) — ) =0. Together with (1) and (3) we have y(s) —vy=0
which means 7 is a point, and is planar.



Math 348 Fall 2017

QUESTION 3. (5 PTS) Prove that the two curves

v(t)=(t+V3sint,2cost, /3t —sint) and (u)= <2cos%,25m%, —u)

are congruent, that is there is a rigit motion M such that v and M~ coincide.

Solution. We have

=(1++3cost,—2sint, V3 —cost) = ||7]| =22,

§(u) = (—sing, cosg, —1) = ||4]| = V2.

Thus the arc length parametrizations of the two curves are
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and

F(s) = <2 cosﬁ, zsinﬁ, —%)

Now we calculate
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Thus we see that the two curves are congruent.
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