FINAL REVIEW I: TOPICS

1. Info about final.

- 2 hours; About 7 regular problems and 1 to 2 bonus problems;
- Similar level of difficulty (may feel slightly harder due to the amount of material covered) as the midterms;
- To prepare:
 - Midterms and homeworks;
 - Lecture notes;
 - Required sections in the textbook;
 - Optional sections in the textbook.

2. Required topics of 348.

	Curves in \mathbb{R}^3	Surfaces in \mathbb{R}^3	Curves on Surfaces	Mapping between Surfaces
Representation	Parametrized curves Re-parametrization Arc length parametriztion Local frame T, N, B Frenet-Serret equations	Surface patch Tangent plane Local frame: σ_u, σ_v, N_S Christoffel symbols Weingarten map	The curve The tangent	$f, D_p f$ Calculate $D_p f$ Gauss map and related calculation
Measurements	Calculation of arc length	Surface area First fundamental form	Arc length Angles between curves	
Curving	Curvature κ Torsion τ Signed curvature (plane curve)	Second fundamental form Normal curvature κ_n Principal curvature κ_1, κ_2 Principal vectors t_1, t_2 Mean curvature H Gaussian curvature K	Geodesic curvature κ_g Covariant derivative Parallel transport Geodesics	
Theorems, Equations		Gauss equations Codazzi-Mainradi equations	Parallel transport equations Geodesic equations Gauss-Bonnet	Gauss's Remarkable Theorem Gauss-Bonnet for compact surfaces

Table 1. Topics covered in 348. Red equations will be provided in the final