REVIEW FOR MIDTERM 1

TABLE OF CONTENTS

Revi	EW FOR MIDTERM 1
1.	Curves
	1.1. Concepts and theorems
	1.2. Formulas
	1.3. Examples
2.	Surfaces
	2.1. Concepts
	2.2. Formulas
	2.3. Examples

1. Curves

1.1. Concepts and theorems

- PARAMETRIZED CURVE. A parametrized curve in \mathbb{R}^n is a map¹ $x: (\alpha, \beta) \mapsto \mathbb{R}^n$, for some α, β with $-\infty \leq \alpha < \beta \leq \infty$.
- ARC LENGTH PARAMETRIZATION. A parametrization x(t) such that ||x'(t)|| = 1 everywhere.
- Theorems.
 - \circ $\kappa(t) = 0$ for all $t \iff$ the curve is part of a straight line.
 - \circ $\tau(t) = 0$ and $\kappa(t) \neq 0$ for all $t \Longrightarrow$ the curve is a plane curve.

Exercise 1. Does \iff hold?

 \circ $\tau(t) = 0$ and $\kappa(t) = \kappa_0$ constant for all $t \iff$ the curve is part of a circle.

1.2. Formulas

• Arc length.

$$L = \int_{a}^{b} ||x'(t)|| \, \mathrm{d}t. \tag{1}$$

• FINDING ARC LENGTH PARAMETRIZATION.

Given x(t). To find its arc length parametrization,

- i. Find S(t) such that S'(t) = ||x'(t)||.
- ii. Find the inverse function T(s). That is solve S(T(s)) = s.
- iii. The arc length parametrization is given by x(T(s)).
- Geometric quantities.

Arc length parametrization General parametrization

Unit tangent vector
$$T$$
 $x'(s)$
$$\frac{x'}{\|x'\|}$$
Unit normal vector N
$$\frac{x''(s)}{\|x''(s)\|}$$
 $B \times T$
Unit binormal vector B $T(s) \times N(s) = \frac{x'(s) \times x''(s)}{\|x''(s)\|}$
$$\frac{x' \times x''}{\|x' \times x''\|}$$
Curvature κ
$$\|x''(s)\|$$

$$\frac{\|x''(s)\|^2}{\|x''(s)\|^2}$$

$$\frac{(x' \times x'') \cdot x'''}{\|x' \times x''\|^2}$$

Table 1. Geometric quantities

Warning. Only the formulas in red will be provided in exams.

• The Frenet-Serret equations.

$$T' = \kappa N$$

$$N' = -\kappa T + \tau B.$$

$$B' = -\tau N$$
(2)

^{1.} Another name for "function".

Warning. (2) only holds for arc length parametrization.

1.3. Examples

Example 1. Consider the curve $(e^t \cos t, e^t \sin t, e^t), t \in \mathbb{R}$.

• Arc length. We calculate

$$x'(t) = (e^t \cos t - e^t \sin t, e^t \sin t + e^t \cos t, e^t)$$
(3)

therefore

$$||x'(t)|| = \sqrt{3} e^t \tag{4}$$

Consequently the arc length from x(a) to x(b) is given by

$$L = \int_{a}^{b} \sqrt{3} e^{t} = \sqrt{3} (e^{b} - e^{a}).$$
 (5)

- Arc length parametrization. We need s = S(t) such that $S'(t) = \sqrt{3} e^t$. This gives $S(t) = \sqrt{3} e^t$ and the inverse function is $T(s) = \ln(s/\sqrt{3})$. Therefore the arc length parametrization is given by $\left(\frac{s}{\sqrt{3}}\cos\left(\ln(s/\sqrt{3})\right), \frac{s}{\sqrt{3}}\sin\left(\ln(s/\sqrt{3})\right), \frac{s}{\sqrt{3}}\right)$.
- T, N, B, κ, τ (Frenet apparatus).

We calculate

$$x''(t) = (-2e^{t}\sin t, 2e^{t}\cos t, e^{t}), \tag{6}$$

$$x'''(t) = (-2e^t \cos t - 2e^t \sin t, 2e^t \cos t - 2e^t \sin t, e^t), \tag{7}$$

and

$$x'(t) \times x''(t) = e^{2t} (\sin t - \cos t, -\cos t - \sin t, 2), \tag{8}$$

which leads to

$$||x'(t) \times x''(t)|| = \sqrt{6} e^{2t},$$
 (9)

and

$$(x'(t) \times x''(t)) \cdot x'''(t) = 2e^{3t}.$$
 (10)

Consequently we have

$$T(t) = \frac{1}{\sqrt{3}} (\cos t - \sin t, \sin t + \cos t, 1), \tag{11}$$

$$B(t) = \frac{1}{\sqrt{6}} (\sin t - \cos t, -\cos t - \sin t, 2), \tag{12}$$

$$N(t) = \frac{1}{\sqrt{2}} (-\cos t - \sin t, \cos t - \sin t, 0), \tag{13}$$

$$\kappa(t) = \frac{\sqrt{2}}{3}e^{-t},\tag{14}$$

$$\tau(t) = \frac{1}{3}e^{-t}. (15)$$

Example 2. Let x(s) be a regular arclength-parametrized curve with nonzero curvature. The normal line to x at x(s) is the line through x(s) with direction vector N(s). Suppose all the normal lines to x pass through a fixed point. What can you say about the curve?

Solution. We take the fixed point to be the origin. Then we have $x(s) \parallel N(s)$. This means $x(s) \cdot T(s) = 0$ and consequently $x(s) \cdot x'(s) = 0$ so x(s) lies in a sphere. On the other hand $x(s) \parallel x''(s)$ implies the existence of a scalar function $\lambda(s)$ such that $x(s) = \lambda(s) x''(s)$. Taking derivative we have $x'(s) = \lambda'(s) x''(s) + \lambda(s) x'''(s)$ so $(x'(s) \times x''(s)) \cdot x'''(s) = 0$ and therefore $\tau(s) = 0$. From this we conclude that x(s) is a plane curve. Thus x(s) is a circle.

2. Surfaces

2.1. Concepts

- SURFACE PATCH. A surface patch $\sigma: U \mapsto \mathbb{R}^3$ is called regular if it is smooth and the vectors σ_u and σ_v are linearly independent at all points $(u, v) \in U$.
- SURFACE. $S \subset \mathbb{R}^3$ such that at every $p \in S$ there is a surface patch covering it.

2.2. Formulas

• Unit normal vector.

$$\pm \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|}.\tag{16}$$

• Tangent plane.

$$T_p S = \{ a \, \sigma_u(u_0, v_0) + b \, \sigma_v(u_0, v_0) \colon a, b \in \mathbb{R} \}. \tag{17}$$

• Surface area.

$$\int_{U} \|\sigma_{u} \times \sigma_{v}\| \, \mathrm{d}u \mathrm{d}v \tag{18}$$

- DIFFERENTIAL OF FUNCTION $f: S \mapsto \tilde{S}$. Four steps.
 - i. Take a surface patch $\sigma: U \mapsto S$ covering $p: \sigma(u_0, v_0) = p$.
 - ii. Take a surface patch $\tilde{\sigma} \colon \tilde{U} \mapsto \tilde{S}$ covering f(p).
 - iii. Compute $F := (\tilde{\sigma})^{-1} \circ f \circ \sigma : U \mapsto \tilde{U}$.
 - iv. Calculate the Jacobian DF.

2.3. Examples

We will go through Questions 3–5 in homework 2.