Math 348 Fall 2016

LECTURES 20—21: SURFACES AND CURVES IN IR"

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we review what we have learned and try to generalize to
obtain a theory for m-dimensional surfaces in R".
The material is optional.
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Differential Geometry of Curves & Surfaces

92f

= m, etc.

In this lecture we use notation f;:= %, fij:

1. n=m+1.

Surface patch. Naturally we represent an m-dimensional surface patch in R" as
o:U—R", O(Upy ooy Up) = (01 (U1 ooy U)oy T (Ut ooy Uy ). (1)
Tangent and normal vectors.
The tangent plane is
TS =span{c 1,...,0.m} (2)
which can be identified as R™.

Since n=m+ 1, there are exactly two unit normal vectors. We pick one and called
it the unit normal vector and denote it by V.

First fundamental form, measurement.
Define

9ij =00 j, i,j:1,2,...,m. (3)
We call (g;;) the metric tensor. We also use (g;;) to denote the m x m matrix whose

(i,7) entry is g;; for every 1<, j <m.
: m ~ m ~
Then we can easily have, for vectors w=73" w03 w=} ", W;0 ;,

lwlf=,/ > giwiwy, (4)
i =1

m .. . 7 .
Zi,jzl Gij Wi Wy

cos £(w, @) = =]

The first fundamental form is then

Also the volume of o(U) is W

/U\/det(gij) duy -+ dy,. (7)

Second fundamental form.
We denote

b,‘jZ:U,ij‘N:bji- (8)
Then the second fundamental form is
i,j=1
Note that by definition (b;;) is symmetric.

Gauss map, Weingarten map.



Math 348 Fall 2016

We define the Gauss map G: U — $™ through G(o(uy, ..., un)) =N (uy, ..., u). The
corresponding Weingarten map W:= —D§ is then characterized by

W(Z w; a7i> = w; (—N ;). (10)
i=1 i=1
Now notice that there hold
bijj=0,;N=—0,N,=—0; N, (11)
Thus if we write .
—N,izz ik O ks (12)
there would hold k=1
bij= gjnaiw == (bi;) = (gi;) (ai;)" (13)
and consequently we have the matrix relation
(ai;)" = (gi5) 7" (biy)- (14)

e Curvatures.
Let k1, ..., Ky be the eigenvalues of the Weingarten map. Then they solve

det((aij)T—/{[):O<:)det[(bij)—/{(gij)]zo. (15)

We can call Ky, ..., Kk, “principal curvatures”, and define the mean and Gaussian
curvatures as

H;:W, K= ky . (16)

We easily see that
_ det(bij)

~ det(gij)
Of course, the eigenvectores corresponding to each k; are the “principal vectors”. If

we have a coordinate system that is parallel to these “principal vectors”, then both
(gi;) and (b;;) are diagonal.

H=tr[(g:;) " (bij)), (17)

Remark 1. It is immediate that K =limgcs,0—(p) V(\)i(nlg(g))'
e Christoffel symbols.
Write .
U,ij:Z Féjo-,l‘l'bijN- (18)

=1

Multiply both sides by o j we see that

m

[ _ _
Y Thign = 05 00=(gin) ;= 0k 0
=1

= (gir).j— [Z Fljka,l] "0
1=1
= (i) ;= > Theaus (19)
1=1
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Therefore (using , j to denote the u? derivative)

Gik,j = Z g T+ Z 91 Tl
=1 =1

Permuting 7, j, k we see that

gmzz gljrf!ci‘FZ gLl
=1 =1

gji,k:Z glirljk+2 915 ;.
=1 =1

Note that the terms with same color coincide. Thus we have

Z g = gzk Gt Giki— Yijk
or

1 m
=5 > (9)ik' [9iks+ gk — 9ijial-
k=1

Covariant derivative, parallel transport, geodesics.
Again we define

V. w :=Projection of w’ onto T),S.
Consider the curve
x(s) :=0(u1(8), ..., Um(s)).
Let w(s) =wi(s) 014 -+ wn(s) o.m be a tangent vector field. Then we have

Va(s) = w'(s)— (w'(s)-N)N

and the geodesic equation reads

+Z quzuj k=1,2,....m.

i,7=1

(20)

(28)
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Remark 2. We see that (20) actually says V,g =0, or equivalently,

d
ds<

w, W) =

(Vow, ®) + (w, Vi)

where (-, -) is the first fundamental form.

we also have

0ijk=

M-

Codazzi and Gauss equations.
Recalling (18):

:Z [ijou+bi; N,

=1

O-]k:z FljkO'J—FbjkN,

=1

Ukzzz Do+ bri N
=1

Differentiating the three equations with 0y, 0;, 0; respectively, and using (18), we
arrive at

O jki=— Z{ ]kz+zr
=1

=1

m
O kij = E

s=1

]“]‘l‘zrkz sj bklajl}al+{bklj+zrklbl]

{Féj,ﬁz L3 Ty,
s=1

]kail} o1+ {bjk,i + Z ), bli} N,
=1

As the mixed derivatives are equal, we have

e}

e}

Codazzi-Mainradi equations

bz‘j,k - bjk,z‘ = Z [Fl]k blz‘ — Figblk]

Gauss equations

bjk Qi1 — bzy A=

We denote

and

I
Rijk'—

,Z

m

=1

Jki zyk"*’z

2] k_l_z Féz
szyk Z gisz]k

=1

— T3 T4

Tar]

- bijakl} o+ {bij,k+ > Fi‘jbzk} N
=1

"

(39)

(40)
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Then there holds

Rsijr= Z gsibjr aip — Z 9sibijar;=bgibrr — bsi by (41)
=1 =1

e Gauss' Remarkable Theorem.
It is clear that R! ik and Ry ;i are invariant under local isometries. Such invariance
also holds for

Qs Ai] — Qs Al = Z (g)s_jl Rljj. (42)
j=1

This reduces to the invariance of K = a1 a9 — a12 a12 under local isometries when
m=2.

On the other hand, the question remains that whether the Gaussian curvature
K =det(a;;) is invariant or not. Obviously, if det(a;;) can be determined from all the
Qrs 051 — Qi s Ak then the answer would be affirmative. This is true when m is even. In
fact we have the following formula':

1
22l det(gi;)

R1112]1]2 R1314]3]4 Rlnfll'n]nfl]n € "e " (43>

where € = +1, according to whether i, ...,4, is an even or odd permutation. The
situation is more complicated when m is odd.
We discuss the two cases now.

o mis even.

LEMMA 3. Let m €N be even. Then K is a function of the collection agsa;; —
Ais Af]-

Proof. We notice that the collection ay a;; — a;s ax; is that of determinants of
all 2 x 2 submatrices of (a;;). Since the determinant of an n x n matrix can be
represented as a sum of products between determinants of its 2 x 2 submatrices
and determinants of its (n — 2) x (n — 2) submatrices,? it follows that K is a
function of apsa;; —a;sag, 1,8, k,1=1,2,...,m. O

o mis odd.

— In this case K is not a function of aisa;; — a;sax;, as can be seen from
the following simple observation: Let 4 :=—A. Then Gi,0;; — G;s Q1=
aps ;1 — ;s agy for all 4, s, k., [, but det A=—det A.

— On the other hand, we now show that this is the only “freedom” det A
has once determinants of all 2 x 2 submatrices are fixed. We will prove
the following.

1. Prove by C. B. Allendoerfer and W. Fenchel around 1938, and later by S. S. Chern in 1944 for abstract m-
dimensional manifolds.

2. Laplace expansion for determinants, see e.g. https://en.wikipedia.org/wiki/Laplace expansion.
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LEMMA 4. If brs bi1 — i b = Qs Q51 — Qi Qg fOT’ all i, S, k, l, then
det B=+det A.

Proof. We start with the case m =3. Denote by C;; the co-factors to
the entry a;;, that is

Ci;=(—1)"7 det(A with ith row and jth column deleted). (44)

Let C = (C;;) be the cofactor matrix. As each C;; is the determinant
of a 2 x 2 submatrix of A, the matrix C is fully determined by axsa;; —
Qjs Q-

Now note that

1
—-1_ T _ 2
A _detAC = det C'=(det A)*. (45)
Thus det A = + vdet C'. Apply the same argument to B we have
det B=++v/det C' and the conclusion follows.

For general odd m, we notice that the “m is even” result can be
applied to each C;;. Therefore

A= ﬁ@ipﬁ (det A)m=1 = det C. (46)

As both det A and det C are real, we still conclude det A=4++v/det C'. [

—  Thus we see that under local isometries, there holds K = +K. We can
conclude K = K if there is a continuous family of local isometries con-
necting identity and the end isometry. More specifically, let f:R"+— R"
be the local isometry between og(u) and oy (u), if there is a continuous
function F(z,t): R+ R" such that

F(z,0)=z, F(x,1)= f(x), (47)

and furthermore for every t,€(0,1), F(x,tp) is a local isometry between
oo(u) and oy,(u) := F(oo(u), ty), then we must have K; = K; thanks to
mean value theorem.

QUESTION 5. Looks like this should always be true at least when the
surface patch is small enough. Proof?

e Gauss-Bonnet.
There is also generalization of Gauss-Bonnet when m is even. This is related
to some major contributions of S. S. Chern and reaches pretty far into modern
mathematics.? Unfortunately I don’t know enough to discuss this here and now.

3. https://en.wikipedia.org/wiki/Generalized Gauss—Bonnet theorem.
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2. m=1.

Set-up. We consider a curve in R™:
x(t):=(2'(t), ...,a"(t),  t€(a, B). (48)
Arc length. The arc length is given by

/ (1)) dt. (49)

The arc length parametrization x(s) is characterized by ||z'(s)|| = 1.

Tangent, principal normal, curvature. Let x(s) be arc length parametrized. The tangent
vector is

T(s)=1a'(s). (50)
The principal normal is then
x//(s)
The curvature is then
o= o (s)]). (52)

Exercise 1. Let x(t) be a parametrized curve where ¢ is not arc length parameter. Derive the

formula for x. Note that in R"™ for general n there is no “cross-product”.

Note that we can also obtain k(s) as measuring “how quickly is z(s) turning away
from the tangent line”:

k =area of the parallelogram spanned by z’(s), z"(s). (53)

For future convenience we denote x by k1, and N by V;.

Torsion and more.
We recall that torsion measures how quickly z(s) turns away from the plane
spanned by T and N. As a consequence, we have

k27 = volume of the parallelopiped spanned by x'(s), z"(s), z"(s). (54)
From now on we denote 7 by k2. We denote by N» the unit normal vector in span{z’,
x” x"} that is perpendicular to T, N7 and such that the orthonormal system {7, Ny,
N,} is positive.

Exercise 2. Prove that

It is clear that we can go on to define x,, through

TS L

Ky := volume of the parallelopiped spanned by #/(s), ..., z(™*Y(s)  (55)
for m=3,4,....n — 1, and N,, the unit normal vector in span{z’, ..., z(™*Y} that is
perpendicular to T, Ny, ..., Ny, —1 such that the orthonormal system {T', Ny, ..., N, }
is positive.

Thus we have n — 1 curvatures K1 =K, ko =T,K3, ..., Kp_1.
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e Frenet-Serret equations.

e}

o

o

T'. By definition
T = K1 Nl' (56)
N{. We differentiate

x"(s) = (k1 N1) = k1 N1 + k1 N{ = k1 N{ =2""(s) — k1 Ny € span{z’, 2",

x"}. (57)
Therefore
Ni=aT+bN;+cNs. (58)
As N{LN; there holds b=0. On the other hand, from 7"- N; =0 we have
k1+T -N{=0=a=T-N{=—kK (59)
Using (57) again we have
2"(s)=—kKiT + k] N1+ k1c Ny (60)
which gives
Volume of {2/, 2", 2"} = kic. (61)

Thus ¢ = ko, that is
N{=—k1T + k3 Ns. (62)
Nj. Similarly we have
Ns=aT + by Ny + by Ny + b3 Ns. (63)

Using T - Ny =0 we have a = 0. Using Ny - N, =0 we have by = —ko. Using
| No|| =1 we have by =0. Finally as

x(4)(s) = —(k})'T —KIT' + k{ Ny + ki N{ + (k1 k2)' N+ k1 k2 N3
= —(K})'T — K} N1+ K Ny + ki (—k1 T + ko Ny)

+(k1 K2)' No+ K1 ko (—ke Ni+ b N3), (64)

we conclude

Volume of {z',z" 2" 2™} = Volume of {T, ki Ny, k1 kg Ny, K1 kg by N3}
= K%K%bgjbgzl‘ﬂg. (65)
Therefore

NQ/:—I‘{QNl—I—KJgNg. (66)

N3. Similarly we can show

Né:—K3N2+I€4N4. (67)

Exercise 3. Derive the full Frenet-Serret equations.
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