
Lecture 9: Examples and Applications of h�; �ip;S

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we study how to measure distance on a surface patch.
The required textbook sections are �6.1. The optional sections are �6.2�5.

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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� Calculate the �rst fundamental form: Let �:U 7!R3 be a surface patch of S.

E(u; v) du2+2F(u; v) dudv+G(u; v) dv2 (1)

with

E= k�uk2; F= �u ��v; G= k�vk2: (2)

� Use the �rst fundamental form to calculate length, angle, area.

� Arc length for the curve x(t) := �(u(t); v(t)) from t= a to t= b.

L=

Z
a

b

E(x(t)) u0(t)2+2F(x(t)) u0(t) v 0(t)+G(x(t)) v 0(t)2
p

dt: (3)

� Angle between x1(t) :=�(u1(t); v1(t)) and x2(t) :=�(u2(t); v2(t)). Assume the
two curves intersect at p= �(u0; v0)=x1(t1)=x2(t2).

cos �=
E u1

0(t1)u2
0(t2)+F (u1

0(t1) v2
0(t2)+u2

0(t1) v1
0(t2))+Gv1

0(t1) v2
0(t2)

E u1
0(t1)2+2F u1

0(t1) v1
0(t1)+G v1

0(t1)2
p

E u2
0(t2)2+2F u2

0(t2) v2
0(t2)+G v2

0(t2)2
p (4)

Here E=E(u0; v0);F=F(u0; v0);G=G(u0; v0).

� Area of �(U).Z
U

E(�(u; v))G(�(u; v))¡F(�(u; v))2
p

dudv: (5)

Formulas for the First Fundamental Form

1. Calculation using �rst fundamental form
Example 1. 1Consider the hyperbolic paraboloid �(u; v)= (u; v; u v).

i. The arc length of the curve u= t; v= t for 06 t6 1.
ii. The angle between the curves u=1 and v=1.
iii. The area of �(U) where U is the region bounded by the positive u; v axes and the

quarter circle u2+ v2=1.
Solution. We calculate

�u=(1; 0; v); �v=(0; 1; u) (6)
which give

E=1+ v2; F=u v; G=1+ u2: (7)
i. We have

L =

Z
0

1

E(t; t) 12+2F(t; t) 1 � 1+G(t; t) 12
p

dt

=

Z
0

1

(1+ t2)+2 t2+(1+ t2)
p

dt

=

Z
0

1

2+4 t2
p

dt

1. Taken from http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node28.html.
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2

r
+
1
2
ln
¡

2
p

+ 3
p �

: (8)

ii. The two curves intersect at u= v=1. We calculate

E(1; 1)=G(1; 1)=2; F(1; 1)=1: (9)

Now we take the following parametrization of u=1; v=1: (1; t); (t;1). That is we have
u1(t)=1; v1(t)= t and u2(t)= t, v2(t)=1. The intersection now is at t1=1; t2=1. We
calculate

u1
0 (t1)=0; v1

0(t1)=1; u2
0 (t2)=1; v2

0(t2)=0: (10)

Substituting into (4) we have

cos �=
1
2
=) �=

�
3
: (11)

iii. Applying (5) we obtain

A =

Z
U

1+u2+ v2
p

dudv

=

Z
0

�/2Z
0

1

1+ r2
p

r dr d�=
�
6

¡
8

p
¡ 1
�
: (12)

2. Use �rst fundamental form to understand surfaces (optional).

2.1. Isometry

Definition 2. (Definition 6.2.1 of textbook) f :S1 7!S2 is called a local isometry if
it takes any curve in S1 to a curve of the same length in S2.

Notice that

� If f :S1 7!S2 is a local isometry, then f is one-to-one, that is if p; q2S1 are di�erent
points, then so are f(p); f(q)2S2.

� As a consequence, if �1(u; v) is a surface patch for S1, then so are �2(u; v) := f(�1(u;
v)).

� Now let E1 du
2+ 2F1 du dv+G1 dv

2 be the �rst fundamental form of S1 calculated
using �1, and E2 du

2 + 2 F2 du dv + G2 dv
2 be the �rst fundamental form of S2

calculated using �2.

� For any curve �1(u(t); v(t)) on S1, it is mapped to �2(u(t); v(t)) on S2. For any a<b,
the arc length of the two curves are given byZ

a

b

E1u0
2+2F1u0 v 0+G1 v 0

2
p

dt (13)
and Z

a

b

E2u0
2+2F2u0 v 0+G2 v 0

2
p

dt (14)
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respectively.

� As they are equal for any a<b, there must hold

E1u
02+2F1u

0 v 0+G1 v
02=E2u

02+2F2u
0 v 0+G2 v

02 (15)

for every t.

� Now we �x (u0; v0) and note that (15) must hold for every (u(t); v(t)) passing through
this point, and furthermore E1;F1;G1;E2;F2;G2 depend on (u0; v0) only. This means
the following must hold.

E1=E2; F1=F2; G1=G2: (16)

� Obviously, if (16) holds, then f is a local isometry.

Summarizing the above, we see that

Theorem 3. (Corollary 6.2.3 of textbook) Let f :S1 7!S2 be a local di�eomorphism.
It is a local isometry if and only if for every surface patch �1 of S1, the patches �1 and
�2 := f ��1 of S1 and S2 respectively, have the same �rst fundamental form.

Proposition 4. Let f :S1 7!S2 be a local di�eomorphism, then

i. it preserves angles. That is if x1(t); x2(t) are two intersecting curves on S1, then the
angle between them at the intersection is the same as the angle between f(x1(t)) and
f(x2(t)) on S2.

ii. it preserves area. That is the area of of a region 
 on S1 is the same as that of f(
)
on S2.

Exercise 1. Prove Proposition 4.

Example 5. There is a local isometry between the cylinder x12+x22=1 and the plane x3=0.
To see this, we take S1 to be the cylinder and S2 the plane. We use the following surface
patches

�1(u; v)= (cosu; sinu; v); �2(u; v)= f(�1(u; v))= (u; v; 0): (17)

Exercise 2. What is f in the original x1; x2; x3 variables?

Now calculate

E1=1;F1=0;G1=1; E2=1;F2=0;G2=1: (18)

Remark 6. We notice that there is a issue here. In Theorem 3 we require E1=E2, etc., for
every �1. Could it happen that for one �1 we have E1=E2; ::: at p2 S1 but for another �~1
of S1 covering p this ceases to hold? We check that such cannot happen. Let's say �~1 and
�1 are related through u=U(u~; v~) and v=V (u~; v~). Then we have

du=Uu~du~+Uv~dv~; dv=Vu~du~+Vv~dv~: (19)

This leads to

E~ 1=E1Uu~
2+2F1Uu~Vu~+G1Vu~

2; E~ 2=E2Uu~
2+2F2Uu~Vu~+G2Vu~

2: (20)
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Thus we see that E1=E2 if and only if E~ 1=E~ 2. The arguments for F1;F2; ::: are similar.

Example 7. There can be no local isometry between the unit sphere and the plane.
To see this, we assume the contrary. Let f be a local isometry between the upper

hemisphere and the plane. Now notice the following.

� f maps big circles to straight lines, as the shortest path on the sphere between two
points is along the big circle passing them.

� Two di�erent big circles intersect at two di�erent points. Consequently their (straight-
line) images must do the same and thus be the same straightline.

We reach contradiction.

Remark 8. Suppose we try to make a map of a surface S, then ideally we want the map
to be a rescaling of a part of the plane that enjoys a local isometry with S. From Example
7 we see that this is not possible for the sphere. In other words, all the maps we are using
are distorted in some way.

2.2. Conformal mappings

Definition 9. (Definition 6.3.2 of the textbook) f :S1 7!S2 is conformal if the angle
of intersection at p for 
1; 
~1 is always the same as the angle at f(p) of f(
1); f(
~1).

Theorem 10. (Corollary 6.3.4 of the textbook) A local di�eomorphism f :S1 7!S2
is conformal if and only if for every surface patch �1 of S1, the �rst fundamental forms of
the patches �1 and �2 := f � �1 are proportional. In other words, there is a function �(u; v)
such that

E2=�E1; F2=�F1; G2=�G1: (21)

Exercise 3. Address the issue raised in Remark 6 for conformal mappings.

Example 11. There is a conformal mapping between the sphere and the plane. Let S1 be
the plane x3=0 and S2 be the unit sphere x12+ x2

2+x3
2=1. De�ne

f(x1; x2; 0)=

�
2x1

1+x1
2+x2

2 ;
2x2

1+x1
2+x2

2 ;
x1
2+ x2

2¡ 1
x1
2+x2

2+1

�
: (22)

We take

�1(u; v)= (u; v; 0): (23)

Thus

�2(u; v)=

�
2u

u2+ v2+1
;

2 v
u2+ v2+1

;
u2+ v2¡ 1
u2+ v2+1

�
: (24)

We have

E2 =
4

(u2+ v2+1)2
; (25)

F2 = 0; (26)

G2 =
4

(u2+ v2+1)2
: (27)
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On the other hand clelary E1=G1=1;F1=0. Therefore the mapping f is conformal.

Exercise 4. Show that the usual �spherical coordinate� is not a conformal mapping.

Theorem 12. Let S1; S2 be arbitrary surfaces. Then there is a conformal mapping between
them (locally).

Proof. We sketch the proof.

1. It su�ces to prove the theorem for the case S1 is the plane x3= 0. We identify this
plane with the plane of the parameters u; v.

2. We �rst show that for any surface S and any p 2 S, there exists a surface patch �
such that �u?�v everywhere.

3. We prove the following: Let a(u; v); b(u; v)2T�(u;v)S, not parallel. Then there is a re-
parametrization �~(u~; v~) := �(U(u~; v~); V (u~; v~) around p such that �~u~ k a; �~v~ k b.

To see this, we check that all we need is for U ; V to satisfy

@(U ; V )
@(u~; v~)

=

�
�a1 � a2
� b1 � b2

�
(28)

or equivalently, there exist integration factors �; � such that (b2;¡b1)
� (a1 b2¡ a2 b1)

=rU~ and
(¡a2; a1)

�(a1 b2¡ a2 b1)
=rV~ where (U~; V~) is the inverse of the function (u~; v~) 7! (U ; V ).

4. Recall that (f1(u;v); f2(u;v)) is the gradient of a function if and only if @f1
@v
=

@f2
@u

which
reduces to a �rst order linear partial di�erential equation for � (or �). The existence
of solution for such an equation is guaranteed.

5. We have reduced the �rst fundamental form to Edu2+Gdv2. Now let �2 := G

E
. We

have E (du ¡ i � dv) (du + i � dv). Similar to above we have a (complex) change of
variable such that the �rst fundamental form becomes E~ du~ dv~ where there holds
v~= u~ the conjugate of u~. Now setting the new variables u�; v� to be u~= u�+ i v� gives
the desired result. �

Example 13. (Mercator projection2) Let S1 be the unit sphere and S2 be the cylinder
x1
2+x2

2=1. Let p2S1 and let � be the angle from the x1-x2 plane to the ray connecting the

origin to p. Then f : (x1; x2; x3) 7!
�

x1

x1
2+x2

2
p ;

x2

x1
2+x2

2
p ; ln

¡
tan
¡ �
2
+

�

4

���
is conformal.

2.3. Equiareal mappings

Definition 14. (Definition 6.4.4 of the textbook) f :S1 7!S2 is said to be equiareal
if it takes any region in S1 to a region of the same area in S2.

Theorem 15. (Theorem 6.4.5) A local di�eomorphism f :S1 7!S2 is equiareal if and only
if, for any surface patch �1 of S1, the �rst fundamental forms of �1 and �2= f � �1 satisfy

E1G1¡F1
2=E2G2¡F2

2 (29)

2. http://www.math.ubc.ca/~israel/m103/mercator/mercator.html.
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Exercise 5. Address the issue raised in Remark 6 for equiareal mappings.

Remark 16.

� f :S1 7!S2 is a local isometry if and only if it is conformal and equiareal.

� There are equiareal mappings between the sphere and the plane.3

Question 17. Are there always equiareal mapping between two surfaces?

3. Developable surfaces (optional)
In this section we try to understand which surfaces can be ��attened� without stretching or
squeezing. In other words, which surface has a local isometry with the plane. Such a surface
is called �developable�. Let S be a developable surface. Then we have the following.

� S is a �ruled� surface, that is S can be covered by surface patches of the form

�(u; v)=�(u)+ v l(u) (30)

where � is a curve in R3 and l(u) is a curve on S2. The proof of this involves Gaussian
curvature and may be discussed in a few weeks.4

� A ruled surface S: �(u; v) = �(u) + v l(u) is developable if and only if N(�(u0; v)) is
independent of v, that is the tangent planes along the straightline does not rotate.
To see this, observe the following.

� The image of each line �(u0)+v l(u0) is also a straightline in the plane. Assume
otherwise, let �(u0; v1) and �(u0; v2) be such that the straight line connecting
them is mapped to a curve not straight. Then the pre-image of the straightline
connecting f(�(u0; v1)) and f(�(u0; v2)) is shorter than jv1¡v2j but this is not
possible as jv1¡ v2j is the shortest distance between �(u0; v1) and �(u0; v2) in
R3 (not just on S).

� Let v1=/ v2. Then clearly l(u0)2T�(u0;v1)S and also l(u0)2T�(u0;v2)S. Now start
from �(u0; v1) draw a curve (to one side of l) perpendicular to l(u0), then
start from �(u0; v2) draw on the same side a curve perpendicular to l(u0). As
isometries are conformal, the images of these two curves on the plane are also
perpendicular to the image of l (which is a straight line). Considering the
distance between two points on the two curves very close to the line will show
that the tangents of the two curves must be parallel and consequently the two
tangent planes coincide.

� A ruled surface S: �(u; v)=�(u)+ v l(u) is developable if and only if (�0(u)� l(u)) �
l 0(u)= 0.

Proof. We calculate

�u=�0(u)+ v l 0(u); �v= l(u): (31)

3. https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection. Also see Theorem 6.4.6 of the
textbook.

4. Also see http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node190.html.
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Thus

�u��v=�0(u)� l(u)+ v l 0(u)� l(u): (32)

We calculate

(�u��v)v= l 0(u)� l(u): (33)

Notice that 0 = (�0(u) � l(u)) � l 0(u) = ¡�0(u) � (l 0(u) � l(u)). Consequently �0(u) �
l(u)k l 0(u)� l(u). From this it follows that [�u��v]� [�u��v]v=0 which implies that
the direction of �u� �v does not change as v changes. �

� We remark that the only ruled surfaces that allow two (or more) di�erent ways of
ruling it are the hyperboloid of a single sheet, the hyperbolic paraboloid, and the
plane. The former two are not developable, while the last is obviously developable.

� We have the following.

Theorem 18. Any su�ciently small open subset of a surface locally isometric to a
plane is an open subset of a plane, a generalized cylinder, a generalized cone, or a
tangent developable.

Proof. All we need to show is if S is a ruled surface and is developable, then S is
one of the following:

� plane;

� generalized cylinder: �(u)+ v l;

� generalized cone: �+ v l(u);

� tangent developable: �(u)+ v �0(u) .

To see this we discuss the possible cases for (�0(u)� l(u)) � l 0(u)=�0(u) �(l 0(u)� l(u))=
0.

� l 0� l=0. In this case l(u) is constant and we have generalized cylinder;

� l 0 � l =/ 0. Now as �0?l 0 � l, we have �0(u) = a(u) l(u) + b(u) l 0(u). Now let
�(u) :=�(u)¡ b(u) l(u). We calculate

� 0(u)= (a(u)¡ b0(u)) l(u): (34)

¡ If a(u)¡ b0(u) = 0, then �(u) is a �xed point and we have generalized
cone.

¡ If a(u)¡ b0(u)=/ 0, then l(u) k � 0(u) and the surface becomes

�(u)+ [b(u)+ v] l(u) (35)

which is the same surface as

�(u)+ v � 0(u) (36)

a tangent developable. �
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