HOMEWORK 8: GAUSS AND CODAZZI EQUATIONS

(Total 20+5 pts; Due Nov. 25 12pm)

QUESTION 1. (10 PTS) Decide whether there is a parametrized surface $\sigma(u,v)$ with

- a) (5 PTS) $\mathbb{E} = \mathbb{G} = 1, \mathbb{F} = 0 \text{ and } \mathbb{L} = \mathbb{N} = e^{2u}, \mathbb{M} = 0.$
- b) (5 PTS) $\mathbb{E} = 1, \mathbb{F} = 0, \mathbb{G} = \sin^2 u, \mathbb{L} = \sin^2 u, \mathbb{M} = 0, \mathbb{N} = 1.$

Solution.

a) We first calculate the Christoffel symbols. Recall that

$$\sigma_{uu} = \Gamma_{11}^{1} \sigma_{u} + \Gamma_{11}^{2} \sigma_{v} + \mathbb{L} N
\sigma_{uv} = \Gamma_{12}^{1} \sigma_{u} + \Gamma_{12}^{2} \sigma_{v} + \mathbb{M} N .
\sigma_{vv} = \Gamma_{22}^{1} \sigma_{u} + \Gamma_{22}^{2} \sigma_{v} + \mathbb{N} N$$
(1)

From the first equation we have

$$\Gamma_{11}^{1} = \Gamma_{11}^{1} \,\sigma_{u} \cdot \sigma_{u} = \sigma_{uu} \cdot \sigma_{u} = \left(\frac{\mathbb{E}}{2}\right)_{u} = 0, \tag{2}$$

due to the fact that $\sigma_u \cdot \sigma_u = \mathbb{E} = 1$, $\sigma_u \cdot \sigma_v = \mathbb{F} = 0$, $\sigma_u \cdot N = 0$. Similarly we find that all other Γ_{ij}^k are zero too. The Gauss equations now yield $e^{4u} = \frac{\mathbb{E} \mathbb{N} - \mathbb{M}^2}{\mathbb{E} \mathbb{G} - \mathbb{F}^2} = K = 0$, contradiction. Therefore such surface does not exist.

b) Again we start from

$$\sigma_{uu} = \Gamma_{11}^{1} \sigma_{u} + \Gamma_{11}^{2} \sigma_{v} + \mathbb{L} N
\sigma_{uv} = \Gamma_{12}^{1} \sigma_{u} + \Gamma_{12}^{2} \sigma_{v} + \mathbb{M} N .
\sigma_{vv} = \Gamma_{22}^{1} \sigma_{u} + \Gamma_{22}^{2} \sigma_{v} + \mathbb{N} N$$
(3)

We solve

$$\Gamma_{11}^1 = \Gamma_{12}^2 = \Gamma_{12}^1 = \Gamma_{22}^2 = 0, \quad \Gamma_{12}^2 = \frac{\cos u}{\sin u}, \quad \Gamma_{22}^1 = -\sin u \cos u.$$
 (4)

We also have

$$K = \frac{\mathbb{L} \,\mathbb{N} - \mathbb{M}^2}{\mathbb{E} \,\mathbb{G} - \mathbb{F}^2} = 1. \tag{5}$$

The Codazzi-Mainradi now become

$$0 = 0
0 = \sin^2 u \left(-\sin u \cos u\right)$$
(6)

which is not satisfied. Therefore such surface does not exist.

QUESTION 2. (10 PTS) Let S be a surface with first fundamental form $u^2 du^2 + \beta u^2 dv^2$ for some $\beta > 0$, and second fundamental form $A(u, v) du^2 + B(u, v) dv^2$.

- a) (5 PTS) Find β . Change to: Prove that $A(u,v) B(u,v) = \beta$.
- b) (5 PTS) Prove that A(u, v), B(u, v) are functions of u only.

Proof. We first calculate the Christoffel symbols. We have

$$\sigma_{uu} = \Gamma_{11}^{1} \sigma_{u} + \Gamma_{11}^{2} \sigma_{v} + A(u, v) N \Longrightarrow \begin{cases} \mathbb{E} \Gamma_{11}^{1} = \sigma_{uu} \cdot \sigma_{u} \Longrightarrow \Gamma_{11}^{1} = \frac{1}{u}, \\ \mathbb{G} \Gamma_{11}^{2} = \sigma_{uu} \cdot \sigma_{v} \Longrightarrow \Gamma_{11}^{2} = 0. \end{cases}$$
(7)

$$\sigma_{uv} = \Gamma_{12}^{1} \sigma_{u} + \Gamma_{12}^{2} \sigma_{v} \Longrightarrow \begin{cases} \mathbb{E} \Gamma_{12}^{1} = \sigma_{uv} \cdot \sigma_{u} \Longrightarrow \Gamma_{12}^{1} = 0, \\ \mathbb{G} \Gamma_{12}^{2} = \sigma_{uv} \cdot \sigma_{v} \Longrightarrow \Gamma_{12}^{2} = \frac{1}{u}. \end{cases}$$
(8)

$$\sigma_{vv} = \Gamma_{22}^{1} \sigma_{u} + \Gamma_{22}^{2} \sigma_{v} + B(u, v) N \Longrightarrow \begin{cases} \mathbb{E} \Gamma_{22}^{1} = \sigma_{vv} \cdot \sigma_{u} \Longrightarrow \Gamma_{22}^{1} = -\frac{\beta}{u}, \\ \mathbb{G} \Gamma_{22}^{2} = \sigma_{vv} \cdot \sigma_{v} \Longrightarrow \Gamma_{22}^{2} = 0. \end{cases}$$
(9)

The Codazzi-Mainradi equations and the Gauss equations now become

$$A_v = 0, (10)$$

$$-B_u = -\frac{A(u,v)}{u} - \frac{B(u,v)}{u}, \tag{11}$$

and

$$u^2K = \frac{1}{u^2},\tag{12}$$

$$0 = 0, (13)$$

$$= 0, (14)$$

$$u^2 K = \frac{1}{u^2}. (15)$$

- a) By the Gauss equations $u^2 K = \frac{1}{u^2} \Longrightarrow K = \frac{1}{u^4}$. On the other hand $K = \frac{A(u,v)B(u,v)}{\beta u^4}$. Therefore $A(u,v)B(u,v) = \beta$.
- b) Due to (10) A is a function of u only. Since $AB = \beta$, we have $B = \beta/A$ is also a function of u only.

The following are more abstract or technical questions. They carry bonus points.

QUESTION 3. (5 PTS) Let S be such that $\kappa_1 \neq \kappa_2$ are both constants. Prove that its Gaussian curvature is 0.

(You can assume that the surface patch is such that $\sigma_u \parallel t_1, \sigma_v \parallel t_2$ where t_1, t_2 are the principal vectors.)

Proof. With such $\sigma(u, v)$ we have the first and second fundamental forms to be $\mathbb{E} du^2 + \mathbb{G} dv^2$ and $\mathbb{L} du^2 + \mathbb{N} dv^2$, and furthermore $\kappa_1 = \frac{\mathbb{L}}{\mathbb{E}}, \kappa_2 = \frac{\mathbb{N}}{\mathbb{G}}$.

Now we calculate

$$\Gamma_{11}^{1} = \frac{\mathbb{E}_{u}}{2 \,\mathbb{E}}, \quad \Gamma_{11}^{2} = -\frac{\mathbb{E}_{v}}{2 \,\mathbb{G}},
\Gamma_{12}^{1} = \frac{\mathbb{E}_{v}}{2 \,\mathbb{E}}, \quad \Gamma_{12}^{2} = \frac{\mathbb{G}_{u}}{2 \,\mathbb{G}},
\Gamma_{22}^{1} = -\frac{\mathbb{G}_{u}}{2 \,\mathbb{E}}, \quad \Gamma_{22}^{2} = \frac{\mathbb{G}_{v}}{2 \,\mathbb{G}}.$$
(16)

The Codazzi-Mainradi equations now become

$$\mathbb{L}_{v} = \frac{1}{2} \mathbb{E}_{v} \left(\frac{\mathbb{L}}{\mathbb{E}} + \frac{\mathbb{N}}{\mathbb{G}} \right) = \frac{\kappa_{1} + \kappa_{2}}{2} \mathbb{E}_{v}, \qquad \mathbb{N}_{u} = \frac{1}{2} \mathbb{G}_{u} \left(\frac{\mathbb{L}}{\mathbb{E}} + \frac{\mathbb{N}}{\mathbb{G}} \right) = \frac{\kappa_{1} + \kappa_{2}}{2} \mathbb{G}_{u}.$$
 (17)

Together with $\mathbb{L}_v = \kappa_1 \mathbb{E}_v$, $\mathbb{N}_u = \kappa_2 \mathbb{G}_u$ and $\kappa_1 \neq \kappa_2$, we see that

$$\mathbb{L}_v = \mathbb{E}_v = \mathbb{N}_u = \mathbb{G}_u = 0. \tag{18}$$

Substituting (18) into (16) we see that

$$\Gamma_{11}^{1} = \frac{\mathbb{E}_{u}}{2\,\mathbb{E}}, \qquad \Gamma_{11}^{2} = \Gamma_{12}^{1} = \Gamma_{12}^{2} = \Gamma_{22}^{1} = 0, \qquad \Gamma_{22}^{2} = \frac{\mathbb{G}_{v}}{2\,\mathbb{G}}.$$
(19)

Now the first Gauss equation becomes $\mathbb{E} K = 0$ and consequently K = 0.