HOMEWORK 7: PARALLEL TRANSPORT AND GEODESICS

(Total 20 pts; Due Nov. 7 12pm)

QUESTION 1. (5 PTS) Let γ be a curve on S. Let w be a tangent vector field parallel along γ . Find all $\lambda: \gamma \mapsto \mathbb{R}$ such that λw is still parallel along γ .

Solution. Such λ 's are constant functions.

We have $(\lambda w)' = \lambda w' + \lambda' w$. Now $\nabla_{\gamma}(\lambda w) = 0 \iff (\lambda w)' || N$. Since w' || N, there must hold $\lambda' w || N$, or equivalently $\lambda' = 0$.

On the other hand, if $\lambda = \text{constant clearly } \nabla_{\gamma} w \Longrightarrow \nabla_{\lambda}(\lambda w) = 0.$

QUESTION 2. (5 PTS) Let γ be a curve on S. Let w, \tilde{w} be unit vector fields along γ . Further assume that at every $p \in \gamma$, there holds the angle between $w, \tilde{w}, \angle(w, \tilde{w}) = \theta_0$, a constant. Prove or disprove: w is parallel along γ if and only if \tilde{w} is parallel along γ .

Solution. The claim is true. We parametrize γ by some x(t) and simply write w(t), $\tilde{w}(t)$. We discuss two cases.

- 1. $\angle(w, \tilde{w}) = 0$ or π . Then $\tilde{w} = w$ or -w. Clearly $\nabla_{\gamma} \tilde{w} = 0$.
- 2. Otherwise. Notice that this means $\{w, \tilde{w}\}$ for a basis for the tangent plane. By assumption we have $w \cdot \tilde{w} = \text{constant}$. Therefore

$$w' \cdot \tilde{w} + w \cdot \tilde{w}' = 0. \tag{1}$$

Since $\nabla_{\gamma} w = 0$, we have $w' \perp \tilde{w}$. Therefore $\tilde{w}' \cdot w = 0$. On the other hand, as $\|\tilde{w}\| = 1$ we have $\tilde{w}' \cdot \tilde{w} = 0$. Thus $\tilde{w} \| N$ and consequently $\nabla_{\gamma} \tilde{w} = 0$.

QUESTION 3. (10 PTS) Let S be a surface parametrized by $\sigma(u, v) = (u, v, uv)$.

- a) (7 PTS) Calculate the Christoffel symbols $\Gamma_{11}^1, ..., \Gamma_{22}^2$.
- b) (2 PTS) Write down the geodesic equations for this surface.
- c) (1 PT) Prove that u = constant and v = constant are geodesics.

Proof.

a) We calculate

$$\sigma_u = (1, 0, v), \qquad \sigma_v = (0, 1, u) \tag{2}$$

which gives

$$\mathbb{E} = 1 + v^2, \qquad \mathbb{F} = u v, \qquad \mathbb{G} = 1 + u^2.$$
(3)

Consequently

$$\Gamma_{11}^{1} = \frac{\mathbb{G} \mathbb{E}_{u} - 2 \mathbb{F} \mathbb{F}_{u} + \mathbb{F} \mathbb{E}_{v}}{2 (\mathbb{E} \mathbb{G} - \mathbb{F}^{2})} = 0, \quad \Gamma_{11}^{2} = \frac{2 \mathbb{E} \mathbb{F}_{u} - \mathbb{E} \mathbb{E}_{v} + \mathbb{F} \mathbb{E}_{u}}{2 (\mathbb{E} \mathbb{G} - \mathbb{F}^{2})} = 0,$$

$$\Gamma_{12}^{1} = \frac{\mathbb{G} \mathbb{E}_{v} - \mathbb{F} \mathbb{G}_{u}}{2 (\mathbb{E} \mathbb{G} - \mathbb{F}^{2})} = \frac{v}{1 + u^{2} + v^{2}}, \quad \Gamma_{12}^{2} = \frac{\mathbb{E} \mathbb{G}_{u} - \mathbb{F} \mathbb{E}_{v}}{2 (\mathbb{E} \mathbb{G} - \mathbb{F}^{2})} = \frac{u}{1 + u^{2} + v^{2}}, \quad (4)$$

$$\Gamma_{22}^{1} = \frac{2 \mathbb{G} \mathbb{F}_{v} - \mathbb{G} \mathbb{G}_{u} - \mathbb{F} \mathbb{G}_{v}}{2 (\mathbb{E} \mathbb{G} - \mathbb{F}^{2})} = 0, \quad \Gamma_{22}^{2} = \frac{\mathbb{E} \mathbb{G}_{v} - 2 \mathbb{F} \mathbb{F}_{v} + \mathbb{F} \mathbb{G}_{u}}{2 (\mathbb{E} \mathbb{G} - \mathbb{F}^{2})} = 0.$$

Differential Geometry of Curves & Surfaces

b) The geodesic equations are

$$u'' + \frac{2v}{1+u^2+v^2} u'v' = 0, (5)$$

$$v'' + \frac{2u}{1+u^2+v^2}u'v' = 0.$$
 (6)

c) For $u = u_0$, we take the parametrization $\sigma(u_0, t)$. Then we see that $u(t) = u_0$, v(t) = t satisfy the above equations. Similarly we prove that v = constant are geodesics.

Alternatively, we can prove this by noticing that u = constant and v = constant are straight lines. Therefore must be geodesics.

The following are more abstract or technical questions. They carry bonus points.

There is no bonus question for this homework.