Math 348 Fall 2016

HOMEWORK 6: CURVATURES FOR SURFACES
(Total 20 pts + bonus 5 pts; Due Oct. 28 12pm)

QUESTION 1. (10 p1S) Calculate H, K, K1, Ko, t1, t2 at the point (1,1, 1) for the surface
2=xy.

Solution. We take the natural surface patch o(u,v)= (u,v,uv). Then we have

UUZ(LO»U)a O-v:(oalau)> UUHZO'M,:(O,O,O), qu:(oaoal)a (1)
(_Ua_uvl)
N=———L_""7 2
Vit s @)
Thus at (1,1,1) which corresponds to u=wv =1, we have
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Consequently
1
E=2TF=1,G=2,L=N=0M=——. 4
7 (4)
Solving the equation
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we obtain ki = ﬁ, Ko = —%. Now we have
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Similarly we have
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Finally we easily obtain
_kitke 1 B _ 1
H= 5 = 3\/§, K—Hlﬁdg— 9’ (9)

QUESTION 2. (5 PTS) Let o(u,v) be a surface patch. Assume that E=G,F=0.
a) (3 PTS) Prove that o, + 0y, 18 perpendicular to o, and o,.

b) (2 PTS) Prove that if oy, + 0y, =0 then H =0.
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Proof.
a) We have

(Uuu + va) Oy = Oyy Oyt Oyy Oy

(%>u+(gu'av)v_auv'av
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= (10)
Similarly we have (0, + 0yy) -0, =0.
b) As 0yy+ 0y, =0 we have L+ N=0. Then using E=G,F =0 we have
_EN+LG-2MF E(L+N)
B=—wmec-m ~— ¢ * (11)
Thus ends the proof. O

QUESTION 3. (5 PTS) Let a surface S be such that H=0, K #0. Prove that its Gauss map
G 1is conformal. That is if o is a surface patch for S and we take 6:= G oo as the surface
patch for 82, then there is a scalar function X such that E=\E,F=)\F,G=\G.

(Hint: Write —N, = a1104+ a120,, — N, = a21 0y + a220, and recall the relations between
a;; and E,F, G, L, M, N, H, K. It also helps to write things in matriz form.)

Proof. The surface patch ¢ is in fact just N(u,v)=G(o(u,v)). We write

—Ny=a110,+ a120y,, — Ny=a210,+ a0, (12)

ai; ai2 E F ai; G21
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Then we have
E F N, N, N,-N,
F G N,-N, N,-N,
Now recalling (“11 ag > <
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Next since 0= H = a1+ a2, we have
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Consequently there holds
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as desired. O

(The following are more abstract or technical questions. They carry bonus points. )

QUESTION 4. (BoNus, 5 PTS) Let S be a surface and py € S. Assume that there is a

surface patch o covering py = o(ug, vo) such that at py there holds E =G =1,F =0 and
E,=E,=F,=F,=G,=G,=0.

a) (3 PTS) Prove that the Gaussian curvature at p is
PF _10PG _10°E
oudv 2 ou? 2 w?’

b) (1 PT) Let S be another surface such that there is a local isometry f: S S. Prove
that the Gaussian curvature at f(p) is K = K.

¢) (1 PT) Prove or disprove: H=H.

K= (17)

Proof.

a) We calculate

82F_182G_182E_( o — o2 B o2
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= (O-’U,uv'O-U—"_O-uu'UUU+O-UU'O-UU+O-U'O-UUU)
_(qu'o-uv‘l’o-v'o-uuv) - (qu'auv+au'auvv)

= Oyu* ' Ovv — Oyv* Oyvu- (18>

Now at py write
Ouu=0a0,+bo,+ILN. (19)

As E=G=1,F=0 we see that o,,0,, N form an orthonormal basis.

Since E, =0 we have o, 0,=0 (at py only!) so a=0. Since F,, =G, =0 we have
Owu0yv=0s0b=0. Thus we have ,,=LN.

Similarly we can prove o,,=N N and o,,=M N. Consequently

Oun* Opp — Ouy - Oup=LN—-M?=K (20)
and the proof ends.

b) Let o be a surface patch for S and let 6 := f o 0. Then ¢ is a surface patch for S

and we have, thanks to f being a local isometry, E=E, F=F,G=G. Now k =K
immediately follows from (17).

c) This is not correct. For example consider plane and cylinder. Note that when S is
part of a plane, we can take an orthonormal basis and obtain E=G=1,IF=0. Thus
the assumptions are satisfied.
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