Homework 4: The First Fundamental Form

(Total 20 pts + bonus 5 pts; Due Oct. 14 12pm)

QUESTION 1. (5 PTS) Calculate the first fundamental form of the surface

$$\sigma(u,v) = (3\sin u\cos v, 2\sin u\sin v, \cos u). \tag{1}$$

Solution. We have

$$\sigma_u = (3\cos u\cos v, 2\cos u\sin v, -\sin u), \quad \sigma_v = (-3\sin u\sin v, 2\sin u\cos v, 0). \tag{2}$$

Therefore

$$\mathbb{E}(u,v) = 5\cos^2 u \cos^2 v + 3\cos^2 u + 1,\tag{3}$$

$$\mathbb{F}(u,v) = -5\cos u \sin u \cos v \sin v,\tag{4}$$

$$\mathbb{G}(u,v) = 5\sin^2 u \sin^2 v + 4\sin^2 u. \tag{5}$$

Therefore the first fundamental form is

 $(5\cos^2 u \cos^2 v + 3\cos^2 u + 1) du^2 - 10\cos u \sin u \cos v \sin v du dv + (5\sin^2 u \sin^2 v + 4\sin^2 u) dv^2.$ (6)

QUESTION 2. (5 PTS) Consider the surface patch $\sigma(u,v) = (u\cos v, u\sin v, \ln(\cos v) + u)$. Let $u_1 < u_2$ be arbitrary. Show that the arc length of the curve $\sigma(t,v)$ between $t = u_1$ and $t = u_2$ is independent of v.

Proof. We calculate the first fundamental form:

$$\sigma_u = (\cos v, \sin v, 1), \qquad \sigma_v = \left(-u \sin v, u \cos v, -\frac{\sin v}{\cos v}\right)$$
 (7)

and consequently

$$\mathbb{E}(u,v) = 2, \tag{8}$$

$$\mathbb{F}(u,v) = -\frac{\sin v}{\cos v},\tag{9}$$

$$\mathbb{G}(u,v) = u^2 + \frac{\sin^2 v}{\cos^2 v}.\tag{10}$$

Now the arc length of $\sigma(t, v)$ between $t = u_1$ and $t = u_2$ is given by

$$L = \int_{u_1}^{u_2} \langle \sigma_u, \sigma_u \rangle_{\sigma(t,v),S}^{1/2} dt$$

$$= \int_{u_1}^{u_2} \sqrt{\mathbb{E}(t,v) \cdot 1^2 + 2 \,\mathbb{F}(t,v) \cdot 1 \cdot 0 + \mathbb{G}(t,v) \cdot 0^2} \,dt$$

$$= \sqrt{2} \left(u_2 - u_1 \right) \tag{11}$$

which is clearly independent of v.

QUESTION 3. (10 PTS) Let the first fundamental form for a surface patch be $du^2 + (1 + u^2) dv^2$.

- a) (8 PTS) Calculate the lengths of the three sides and the three angles of the curvilinear triangle bounded by images of $u = \frac{v^2}{2}, u = -\frac{v^2}{2}, v = 1$.
- b) (2 PTS) Prove that the area of the curvilinear triangle is greater than 1/3.

Solution.

- a) We first parametrize the three see curves in the u-v plane:
 - $u = \frac{v^2}{2}$: $(u_1(t), v_1(t))$ with $u_1(t) = \frac{t^2}{2}, v_1(t) = t$;
 - $u = -\frac{v^2}{2}$: $(u_2(t), v_2(t))$ with $u_2(t) = -\frac{t^2}{2}, v_2(t) = t$;
 - v = 1: $(u_3(t), v_3(t))$ with $u_3(t) = t, v_3(t) = 1$.

The three vertices are given by

- $V_1 = (-\frac{1}{2}, 1)$: Intersection of $(u_2(t), v_2(t))$ with $(u_3(t), v_3(t))$.
- $V_2 = (\frac{1}{2}, 1)$: Intersection of $(u_1(t), v_1(t))$ with $(u_3(t), v_3(t))$.
- $V_3 = (0,0)$: Intersection of $(u_1(t), v_1(t))$ with $(u_2(t), v_2(t))$.

Now we are ready to calculate:

• The $(u_1(t), v_1(t))$ side between V_2, V_3 . Here we have $(0,0) = (u_1(0), v_1(0))$ and $(\frac{1}{2}, 1) = (u_1(1), v_1(1))$. Therefore the arc length is given by

$$L_{1} = \int_{0}^{1} \sqrt{1 \cdot t^{2} + \left(1 + \frac{t^{4}}{4}\right) \cdot 1^{2}} dt$$
$$= \int_{0}^{1} \frac{t^{2} + 2}{2} dt = \frac{7}{6}.$$
 (12)

• The $(u_2(t), v_2(t))$ side between V_1, V_3 . Here we have $(0, 0) = (u_2(0), v_2(0))$ and $\left(-\frac{1}{2}, 1\right) = (u_2(1), v_2(1))$. Therefore

$$L_{2} = \int_{0}^{1} \sqrt{1 \cdot (-t)^{2} + \left(1 + \frac{t^{4}}{4}\right) \cdot 1^{2} dt}$$

$$= \frac{7}{6}.$$
(13)

• The $(u_3(t), v_3(t))$ side between V_1, V_2 . Here we have $\left(-\frac{1}{2}, 1\right) = \left(u_3\left(-\frac{1}{2}\right), v_3\left(-\frac{1}{2}\right)\right)$ and $\left(\frac{1}{2}, 1\right) = \left(u_3\left(\frac{1}{2}\right), v_3\left(\frac{1}{2}\right)\right)$. Consequently

$$L_3 = \int_{-1/2}^{1/2} \sqrt{1 \cdot 1^2} \, \mathrm{d}t = 1. \tag{14}$$

• The angle A_1 at V_1 . We have $V_1 = \left(-\frac{1}{2}, 1\right) = \left(u_2(1), v_2(1)\right) = \left(u_3\left(-\frac{1}{2}\right), v_3\left(-\frac{1}{2}\right)\right)$. Thus we calculate

$$\mathbb{E}(V_1) = 1, \, \mathbb{F}(V_1) = 0, \, \mathbb{G}(V_1) = \frac{5}{4}$$
 (15)

and

$$(u_2'(1), v_2'(1)) = (-1, 1), \qquad (u_3'(1), v_3'(1)) = (1, 0).$$
 (16)

Therefore

$$\cos A_1 = \frac{1 \cdot (-1) \cdot 1 + \frac{5}{4} \cdot 1 \cdot 0}{\sqrt{1 \cdot (-1)^2 + \frac{5}{4} \cdot 1^2} \sqrt{1 \cdot 1^2 + \frac{5}{4} \cdot 0^2}} = -\frac{2}{3}.$$
 (17)

Note that in fact this is the outer angle, so the inner angle should be $\cos A_1 = \frac{2}{3}$.

• The angle A_2 at V_2 . We have $V_2 = (\frac{1}{2}, 1) = (u_1(1), v_1(1)) = (u_3(\frac{1}{2}), v_3(\frac{1}{2}))$. Thus we calculate

$$\mathbb{E}(V_2) = 1, \mathbb{F}(V_2) = 0, \mathbb{G}(V_2) = \frac{5}{4}$$
 (18)

and

$$(u_1'(1), v_1'(1)) = (1, 1), \qquad (u_3'(1), v_3'(1)) = (1, 0).$$
 (19)

Therefore

$$\cos A_2 = \frac{2}{3}.\tag{20}$$

• The angle A_3 at V_3 . We have $V_3 = (0,0) = (u_1(0), v_1(0)) = (u_2(0), v_2(0))$. Thus we calculate

$$\mathbb{E}(V_3) = 1, \mathbb{F}(V_3) = 0, \mathbb{G}(V_3) = 1$$
 (21)

and

$$(u_1'(0), v_1'(0)) = (0, 1), \qquad (u_2'(0), v_2'(0)) = (0, 1)$$
 (22)

which means

$$\cos A_3 = 1. \tag{23}$$

b) We have

$$A = \int_{U} \sqrt{\mathbb{E} \mathbb{G} - \mathbb{F}^{2}} du dv$$

$$= \int_{U} \sqrt{1 + u^{2}} du dv$$

$$\geq \int_{U} du dv$$

$$= \int_{0}^{1} \left[\int_{-v^{2}/2}^{v^{2}/2} du \right] dv = \frac{1}{3}.$$
(24)

The following are more abstract or technical questions. They carry bonus points.

QUESTION 4. (BONUS, 5 PTS) Consider the surface of revolution $\sigma(u, v) = (f(u) \cos v, f(u) \sin v, u)$ where f(u) > 0 and $v \in [0, 2\pi]$.

a) (2 PTS) Prove that it can always be parametrized so that the first fundamental form becomes $\mathbb{E}(v) du^2 + dv^2$.

- b) (2 PTS) Find a conformal mapping between $\sigma(u,v)$ and the plane.
- c) (1 PT) For what f is such a surface developable? Justify your claim.

Proof.

a) We calculate its first fundamental form:

$$\sigma_u = (f'(u)\cos v, f'(u)\sin v, 1), \qquad \sigma_v = (-f(u)\sin v, f(u)\cos v, 0)$$
 (25)

which give

$$\mathbb{E} = 1 + f'(u)^2, \qquad \mathbb{F} = 0, \qquad \mathbb{G} = f(u)^2. \tag{26}$$

The first fundamental form is then

$$(1 + f'(u)^2) du^2 + f(u)^2 dv^2. (27)$$

Now we set $\tilde{v} = F(u) := \int \sqrt{1 + f'(u)^2}$ and $\tilde{u} = v$ which gives

$$d\tilde{v} = \sqrt{1 + f'(u)^2} du, \qquad d\tilde{u} = dv$$
 (28)

which gives the new first fundamental form

$$\tilde{E}(\tilde{v})\,\mathrm{d}\tilde{u}^2 + \mathrm{d}\tilde{v}^2\tag{29}$$

where

$$\tilde{E}(\tilde{v}) = f(F^{-1}(\tilde{v})) \tag{30}$$

with F^{-1} the inverse function of F.

b) From (27) we see that, if we set $G(u) := \int \frac{\sqrt{1+f'(u)^2}}{f(u)} du$, and then $\tilde{u} = G(u), \tilde{v} = v$, we would have (27) becomes

$$f(G^{-1}(\tilde{u}))^2 \left[\mathrm{d}\tilde{u}^2 + \mathrm{d}\tilde{v}^2 \right] \tag{31}$$

so (\tilde{u}, \tilde{v}) gives a conformal mapping between the surface and the plane.

c) For S to be developable, it must be ruled, and along the straight lines the normal does not change. We calculate

$$\sigma_u \times \sigma_v = f(u) \left(-\cos v, \sin v, f'(u) \right). \tag{32}$$

Now fix (u_0, v_0) . We look for those (u, v) very close to (u_0, v_0) such that

$$(-\cos v_0, \sin v_0, f'(u_0)) \parallel (-\cos v, \sin v, f'(u)). \tag{33}$$

Calculating the cross product we see that necessarily $\sin(v-v_0) = 0 \Longrightarrow v-v_0 = k \pi$ for $k \in \mathbb{Z}$. As we are considering (u,v) close to (u_0,v_0) , there must hold $v=v_0$. Therefore $\sigma(v_0,u)$ must be a straight line. Consequently f(u) is a linear function. There are two cases:

i. f(u) is constant. The surface is a cylinder.

ii. f(u) is linear but not constant. The surface is a cone.